Parcel parcel;
parcel.setData(data, data_size);
传输Parcel数据
// 获取ServiceManager
sp sm = defaultServiceManager();
// 获取ActivityManager binder
sp binder = sm->getService(String16(“activity”));
// 传输parcel
int result = binder.get()->transact(code, parcel, NULL, 0);
方式一让我尝到了一点甜头,实现了大佬的思路,不禁让鄙人浮想联翩,感慨万千,鄙人的造诣已经如此之深,不久就会人在美国,刚下飞机,迎娶白富美,走向人生巅峰矣…
[图片上传中…(image-237bb2-1586154434812-4)]
咳咳。不禁想到ioctl的方式我也可以尝试着实现一下。ioctl是一个linux标准方法,那么我们就直奔主题看看,binder是什么,ioctl怎么跟binder driver通信。
Binder是Android系统提供的一种IPC机制。每个Android的进程,都可以有一块用户空间和内核空间。用户空间在不同进程间不能共享,内核空间可以共享。Binder就是一个利用可以共享的内核空间,完成高性能的进程间通信的方案。
Binder通信采用C/S架构,从组件视角来说,包含Client、Server、ServiceManager以及binder驱动,其中ServiceManager用于管理系统中的各种服务。如图:
可以看到,注册服务、获取服务、使用服务,都是需要经过binder通信的。
Binder通信的代表类是BpBinder(客户端)和BBinder(服务端)。
ps:有关binder的详细知识,大家可以查看Gityuan大佬的Binder系列文章。
ioctl(input/output control)是一个专用于设备输入输出操作的系统调用,它诞生在这样一个背景下:
操作一个设备的IO的传统做法,是在设备驱动程序中实现write的时候检查一下是否有特殊约定的数据流通过,如果有的话,后面就跟着控制命令(socket编程中常常这样做)。但是这样做的话,会导致代码分工不明,程序结构混乱。所以就有了ioctl函数,专门向驱动层发送或接收指令。
Linux操作系统分为了两层,用户层和内核层。我们的普通应用程序处于用户层,系统底层程序,比如网络栈、设备驱动程序,处于内核层。为了保证安全,操作系统要阻止用户态的程序直接访问内核资源。一个Ioctl接口是一个独立的系统调用,通过它用户空间可以跟设备驱动沟通了。函数原型:
int ioctl(int fd, int request, …);
作用:通过IOCTL函数实现指令的传递
应用程序在调用ioctl
进行设备控制时,最后会调用到设备注册struct file_operations
结构体对象时的unlocked_ioctl
或者compat_ioctl
两个钩子上,例如Binder驱动的这两个钩子是挂到了binder_ioctl方法上:
static const struct file_operations binder_fops = {
.owner = THIS_MODULE,
.poll = binder_poll,
.unlocked_ioctl = binder_ioctl,
.compat_ioctl = binder_ioctl,
.mmap = binder_mmap,
.open = binder_open,
.flush = binder_flush,
.release = binder_release,
};
它的实现如下:
static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
/根据不同的命令,调用不同的处理函数进行处理/
switch (cmd) {
case BINDER_WRITE_READ:
/读写命令,数据传输,binder IPC通信的核心逻辑/
ret = binder_ioctl_write_read(filp, cmd, arg, thread);
break;
case BINDER_SET_MAX_THREADS:
/设置最大线程数,直接将值设置到proc结构的max_threads域中。/
break;
case BINDER_SET_CONTEXT_MGR:
/设置Context manager,即将自己设置为ServiceManager,详见3.3/
break;
case BINDER_THREAD_EXIT:
/binder线程退出命令,释放相关资源/
break;
case BINDER_VERSION: {
/获取binder驱动版本号,在kernel4.4版本中,32位该值为7,64位版本该值为8/
break;
}
return ret;
}
具体内核层的实现,我们就不关心了。到这里我们了解到,Binder在Android系统中会有一个设备节点,调用ioctl控制这个节点时,实际上会调用到内核态的binder_ioctl方法。
为了利用ioctl启动Android Service,必然是需要用ioctl向binder驱动写数据,而这个控制命令就是BINDER_WRITE_READ
。binder驱动层的一些细节我们在这里就不关心了。那么在什么地方会用ioctl 向binder写数据呢?
阅读Gityuan的Binder系列6—获取服务(getService)一节,在binder模块下IPCThreadState.cpp中有这样的实现(源码目录:frameworks/native/libs/binder/IPCThreadState.cpp):
status_t IPCThreadState::talkWithDriver(bool doReceive) {
…
binder_write_read bwr;
bwr.write_buffer = (uintptr_t)mOut.data();
status_t err;
do {
//通过ioctl不停的读写操作,跟Binder Driver进行通信
if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0)
err = NO_ERROR;
…
} while
(err == -EINTR); //当被中断,则继续执行
…
return err;
}
可以看到ioctl跟binder driver交互很简单,一个参数是mProcess->mDriverFD,一个参数是BINDER_WRITE_READ,另一个参数是binder_write_read结构体,很幸运的是,NDK中提供了linux/android/binder.h
这个头文件,里面就有binder_write_read这个结构体,以及BINDER_WRITE_READ常量的定义。
[惊不惊喜意不意外]
#include
struct binder_write_read {
binder_size_t write_size;
binder_size_t write_consumed;
binder_uintptr_t write_buffer;
binder_size_t read_size;
binder_size_t read_consumed;
binder_uintptr_t read_buffer;
};
#define BINDER_WRITE_READ _IOWR(‘b’, 1, struct binder_write_read)
这意味着,这些结构体和宏定义很可能是版本兼容的。
那我们只需要到时候把数据揌到binder_write_read结构体里面,就可以进行ioctl系统调用了!
再来看看mProcess->mDriverFD是什么东西。mProcess也就是ProcessState.cpp(源码目录:frameworks/native/libs/binder/ProcessState.cpp):
从ProcessState的构造函数中得知,mDriverFD由open_driver方法初始化。
static int open_driver(const char *driver) {
int fd = open(driver, O_RDWR | O_CLOEXEC);
if (fd >= 0) {
int vers = 0;
status_t result = ioctl(fd, BINDER_VERSION, &vers);
}
return fd;
}
ProcessState在哪里实例化呢?
sp ProcessState::self() {
if (gProcess != nullptr) {
return gProcess;
}
gProcess = new ProcessState(kDefaultDriver);
return gProcess;
}
可以看到,ProcessState的gProcess是一个全局单例对象,这意味着,在当前进程中,open_driver只会执行一次,得到的 mDriverFD 会一直被使用。
const char* kDefaultDriver = “/dev/binder”;
而open函数操作的这个设备节点就是/dev/binder。
纳尼?在应用层直接操作设备节点?Gityuan大佬不会骗我吧?一般来说,Android系统在集成SELinux的安全机制之后,普通应用甚至是系统应用,都不能直接操作一些设备节点,除非有SELinux规则,给应用所属的域或者角色赋予了那样的权限。
看看文件权限:
➜ ~ adb shell
chiron:/ $ ls -l /dev/binder
crw-rw-rw- 1 root root 10, 49 1972-07-03 18:46 /dev/binder
可以看到,/dev/binder设备对所有用户可读可写。
再看看,SELinux权限:
chiron:/ $ ls -Z /dev/binder
u:object_r:binder_device:s0 /dev/binder
查看源码中对binder_device角色的SELinux规则描述:
allow domain binder_device:chr_file rw_file_perms;
也就是所有domain对binder的字符设备有读写权限,而普通应用属于domain。
既然这样,肝它!
验证一下上面的想法,看看ioctl给binder driver发数据好不好使。
1、打开设备
int fd = open("/dev/binder", O_RDWR | O_CLOEXEC);
if (fd < 0) {
LOGE(“Opening ‘%s’ failed: %s\n”, “/dev/binder”, strerror(errno));
} else {
LOGD(“Opening ‘%s’ success %d: %s\n”, “/dev/binder”, fd, strerror(errno));
}
2、ioctl
Parcel *parcel = new Parcel;
parcel->writeString16(String16(“test”));
binder_write_read bwr;
bwr.write_size = parcel->dataSize();
bwr.write_buffer = (binder_uintptr_t) parcel->data();
int ret = ioctl(fd, BINDER_WRITE_READ, bwr);
LOGD(“ioctl result is %d: %s\n”, ret, strerror(errno));
3、查看日志
D/KeepAlive: Opening ‘/dev/binder’ success, fd is 35
D/KeepAlive: ioctl result is -1: Invalid argument
打开设备节点成功了,耶✌️!但是ioctl失败了,失败原因是Invalid argument
,也就是说可以通信,但是Parcel数据有问题。来看看数据应该是什么样的。
IPCThreadState.talkWithDriver方法中,bwr.write_buffer指针指向了mOut.data(),显然mOut是一个Parcel对象。
binder_write_read bwr;
bwr.write_buffer = (uintptr_t)mOut.data();
再来看看什么时候会向mOut中写数据:
status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags,
int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer)
{
binder_transaction_data tr;
tr.data.ptr.buffer = data.ipcData();
…
mOut.writeInt32(cmd);
mOut.write(&tr, sizeof(tr));
return NO_ERROR;
}
writeTransactionData方法中,会往mOut中写入一个binder_transaction_data结构体数据,binder_transaction_data结构体中又包含了作为参数传进来的data Parcel对象。
writeTransactionData方法会被transact方法调用:
status_t IPCThreadState::transact(int32_t handle, uint32_t code, const Parcel& data,
Parcel* reply, uint32_t flags) {
status_t err = data.errorCheck(); // 数据错误检查
flags |= TF_ACCEPT_FDS;
if (err == NO_ERROR) {
// 传输数据
err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);
}
…
// 默认情况下,都是采用非oneway的方式, 也就是需要等待服务端的返回结果
if ((flags & TF_ONE_WAY) == 0) {
if (reply) {
//等待回应事件
err = waitForResponse(reply);
}else {
Parcel fakeReply;
err = waitForResponse(&fakeReply);
}
} else {
err = waitForResponse(NULL, NULL);
}
return err;
}
IPCThreadState是跟binder driver真正进行交互的类。每个线程都有一个IPCThreadState
,每个IPCThreadState
中都有一个mIn、一个mOut。成员变量mProcess保存了ProcessState变量(每个进程只有一个)。
接着看一下一次Binder调用的时序图:
Binder介绍一节中说过,BpBinder是Binder Client,上层想进行进程间Binder通信时,会调用到BpBinder的transact方法,进而调用到IPCThreadState的transact方法。来看看BpBinder的transact方法的定义:
status_t BpBinder::transact(uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) {
if (mAlive) {
status_t status = IPCThreadState::self()->transact(mHandle, code, data, reply, flags);
if (status == DEAD_OBJECT) mAlive = 0;
return status;
}
return DEAD_OBJECT;
}
BpBinder::transact方法的code/data/reply/flags这几个参数都是调用的地方传过来的,现在唯一不知道的就是mHandle是什么东西。mHandle是BpBinder(也就是Binder Client)的一个int类型的局部变量(句柄),只要拿到了这个handle就相当于拿到了BpBinder。
下面是在依赖libbinder.so时,启动Service的步骤:
// 获取ServiceManager
sp sm = defaultServiceManager();
// 获取ActivityManager binder
sp binder = sm->getService(String16(“activity”));
// 传输parcel
int result = binder.get()->transact(code, parcel, NULL, 0);
1、获取到IServiceManager Binder Client;
2、从ServiceManager中获取到ActivityManager Binder Client;
3、调用ActivityManager binder的transact方法传输Service的Parcel数据。
通过ioctl启动Service也应该是类似的步骤:
1、获取到ServiceManager的mHandle句柄;
2、进行binder调用获取到ActivityManager的mHandle句柄;
3、进行binder调用传输启动Service的指令数据。
这里有几个问题:
1、不依赖libbinder.so时,ndk中没有Parcel类的定义,parcel数据哪里来,怎么封装?
2、如何获取到BpBinder的mHandle句柄?
Parcel类是Binder进程间通信的一个基础的、必不可少的数据结构,往Parcel中写入的数据实际上是写入到了一块内部分配的内存上,最后把这个内存地址封装到binder_write_read结构体中。Parcel作为一个基础的数据结构,和Binder相关类是可以解耦的,可以直接拿过来使用,我们可以根据需要对有耦合性的一些方法进行裁剪。
c++ Parcel类路径:frameworks/native/libs/binder/Parcel.cpp
jni Parcel类路径:frameworks/base/core/jni/android_os_Parcel.cpp
具体流程参考Binder系列4—获取ServiceManager。
1、获取ServiceManager的mHandle句柄
defaultServiceManager()方法用来获取gDefaultServiceManager
对象,gDefaultServiceManager是ServiceManager的单例。
sp defaultServiceManager() {
if (gDefaultServiceManager != NULL) return gDefaultServiceManager;
while (gDefaultServiceManager == NULL) {
gDefaultServiceManager = interface_cast(
ProcessState::self()->getContextObject(NULL));
}
}
return gDefaultServiceManager;
}
getContextObject方法用来获取BpServiceManager对象(BpBinder),查看其定义:
sp ProcessState::getContextObject(const sp& /caller/) {
sp context = getStrongProxyForHandle(0);
return context;
}
可以发现,getStrongProxyForHandle是一个根据handle获取IBinder对象的方法,而这里handle的值为0,可以得知,ServiceManager的mHandle恒为0。
2、获取ActivityManager的mHandle句柄
获取ActivityManager的c++方法是:
sp binder = serviceManager->getService(String16(“activity”));
BpServiceManager.getService:
virtual sp getService(const String16& name) const {
sp svc = checkService(name);
if (svc != NULL) return svc;
return NULL;
}
BpServiceManager.checkService:
virtual sp checkService( const String16& name) const {
Parcel data, reply;
//写入RPC头
data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
//写入服务名
data.writeString16(name);
remote()->transact(CHECK_SERVICE_TRANSACTION, data, &reply);
return reply.readStrongBinder();
}
可以看到,CHECK_SERVICE_TRANSACTION这个binder调用是有返回值的,返回值会写到reply中,通过reply.readStrongBinder()方法,即可从reply这个Parcel对象中读取到ActivityManager的IBinder。每个Binder对象必须要有它自己的mHandle句柄,不然,transact操作是没办法进行的。所以,很有可能,Binder的mHandle的值是写到reply这个Parcel里面的。
看看reply.readStrongBinder()方法搞了什么鬼:
sp Parcel::readStrongBinder() const {
sp val;
readNullableStrongBinder(&val);
return val;
}
status_t Parcel::readNullableStrongBinder(sp* val) const {
return unflattenBinder(val);
}
调用到了Parcel::unflattenBinder方法,顾名思义,函数最终想要得到的是一个Binder对象,而Parcel中存放的是二进制的数据,unflattenBinder很可能是把Parcel中的一个结构体数据给转成Binder对象。
看看Parcel::unflattenBinder方法的定义:
status_t Parcel::unflattenBinder(sp* out) const {
const flat_binder_object* flat = readObject(false);
if (flat) {
…
sp binder =
ProcessState::self()->getStrongProxyForHandle(flat->handle);
}
return BAD_TYPE;
}
果然如此,从Parcel中可以得到一个flat_binder_object结构体,这个结构体重有一个handle变量,这个变量就是BpBinder中的mHandle句柄。
因此,在不依赖libbinder.so的情况下,我们可以自己组装数据发送给ServiceManager,进而获取到ActivityManager的mHandle句柄。
IPCThreadState是一个被Binder依赖的类,它是可以从源码中抽离出来为我们所用的。上一节中说到,Parcel类也是可以从源码中抽离出来的。
通过如下的操作,我们就可以实现ioctl获取到ActivityManager对应的Parcel对象reply:
Parcel data, reply;
// data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
// IServiceManager::getInterfaceDescriptor()的值是android.app.IActivityManager
data.writeInterfaceToken(String16(“android.app.IActivityManager”));
data.writeString16(String16(“activity”));
IPCThreadState::self()->transact(
0/ServiceManger的mHandle句柄恒为0/,
CHECK_SERVICE_TRANSACTION, data, reply, 0);
reply变量也就是我们想要的包含了flat_binder_object结构体的Parcel对象,再经过如下的操作就可以得到ActivityManager的mHandle句柄:
const flat_binder_object* flat = reply->readObject(false);
return flat->handle;
3、传输启动指定Service的Parcel数据
上一步已经拿到ActivityManger的mHandle句柄,比如值为1。这一步的过程和上一步类似,自己封装Parcel,然后调用IPCThreadState::transact方法传输数据,伪代码如下:
Parcel data;
// 把Service相关信息写到parcel中
writeService(data, packageName, serviceName, sdk_version);
IPCThreadState::self()->transact(
1/上一步获取的ActivityManger的mHandle句柄值是1/,
CHECK_SERVICE_TRANSACTION, data, reply,
1/TF_ONE_WAY/);
4、writeService方法需要做什么事情?
下面这段代码是Java中封装Parcel对象的方法:
Intent intent = new Intent();
ComponentName component = new ComponentName(context.getPackageName(), serviceName);
rvice的Parcel数据**
上一步已经拿到ActivityManger的mHandle句柄,比如值为1。这一步的过程和上一步类似,自己封装Parcel,然后调用IPCThreadState::transact方法传输数据,伪代码如下:
Parcel data;
// 把Service相关信息写到parcel中
writeService(data, packageName, serviceName, sdk_version);
IPCThreadState::self()->transact(
1/上一步获取的ActivityManger的mHandle句柄值是1/,
CHECK_SERVICE_TRANSACTION, data, reply,
1/TF_ONE_WAY/);
4、writeService方法需要做什么事情?
下面这段代码是Java中封装Parcel对象的方法:
Intent intent = new Intent();
ComponentName component = new ComponentName(context.getPackageName(), serviceName);