堆 | 堆排序、优先队列

优先队列

优先队列 :出队顺序与入队顺序无关;和优先级相关,是由堆实现的
头文件是queue

定义:priority_queue
Type 就是数据类型,Container 就是容器类型(Container必须是用数组实现的容器,比如vector,deque等等,但不能用 list。STL里面默认用的是vector),Functional 就是比较的方式。

基本操作
top 访问队头元素
empty 队列是否为空
size 返回队列内元素个数
push 插入元素到队尾 (并排序)
emplace 原地构造一个元素并插入队列
pop 弹出队头元素
swap 交换内容

堆排序

堆排序相对其它nlogn级别的排序算法来说效率还是低的。
堆这种数据结构更多还是用于动态数据的维护。

建一个堆

最大堆,最小堆的话把shift up函数和shift dowm函数改下比较符就行了
核心是shiftUp和shiftDown操作

template
class MaxHeap{

private:
    Item *data;
    int count;
    int capacity;

    void shiftUp(int k){
        while( k > 1 && data[k/2] < data[k] ){
            swap( data[k/2], data[k] );
            k /= 2;
        }
    }

    void shiftDown(int k){
        while( 2*k <= count ){
            int j = 2*k;
            if( j+1 <= count && data[j+1] > data[j] ) j ++;
            if( data[k] >= data[j] ) break;
            swap( data[k] , data[j] );
            k = j;
        }
    }

public:

    // 构造函数, 构造一个空堆, 可容纳capacity个元素
    MaxHeap(int capacity){
        data = new Item[capacity+1];
        count = 0;
        this->capacity = capacity;
    }

    // 构造函数, 通过一个给定数组创建一个最大堆
    // 该构造堆的过程, 时间复杂度为O(n)
    MaxHeap(Item arr[], int n){    
        data = new Item[n+1];
        capacity = n;

        for( int i = 0 ; i < n ; i ++ )
            data[i+1] = arr[i];
        count = n;

        for( int i = count/2 ; i >= 1 ; i -- )    //heapify
            shiftDown(i);
    }

    ~MaxHeap(){
        delete[] data;
    }

    // 返回堆中的元素个数
    int size(){
        return count;
    }

    // 返回一个布尔值, 表示堆中是否为空
    bool isEmpty(){
        return count == 0;
    }

    // 像最大堆中插入一个新的元素 item
    void insert(Item item){
        assert( count + 1 <= capacity );
        data[count+1] = item;
        shiftUp(count+1);
        count ++;
    }

    // 从最大堆中取出堆顶元素, 即堆中所存储的最大数据
    Item extractMax(){
        assert( count > 0 );
        Item ret = data[1];
        swap( data[1] , data[count] );
        count --;
        shiftDown(1);
        return ret;
    }

    // 获取最大堆中的堆顶元素
    Item getMax(){
        assert( count > 0 );
        return data[1];
    }
};

将n个元素逐个插入到一个空堆中,算法复杂度是O(nlogn)

heapify

heapify就是从第5个结点开始到第1个结点不断shift down

// heapSort1, 将所有的元素依次添加到堆中, 在将所有元素从堆中依次取出来, 即完成了排序
// 无论是创建堆的过程, 还是从堆中依次取出元素的过程, 时间复杂度均为O(nlogn)
// 整个堆排序的整体时间复杂度为O(nlogn)
template
void heapSort1(T arr[], int n){

    MaxHeap maxheap = MaxHeap(n);
    for( int i = 0 ; i < n ; i ++ )
        maxheap.insert(arr[i]);

    for( int i = n-1 ; i >= 0 ; i-- )
        arr[i] = maxheap.extractMax();

}


// heapSort2, 借助我们的heapify过程创建堆
// 此时, 创建堆的过程时间复杂度为O(n), 将所有元素依次从堆中取出来, 实践复杂度为O(nlogn)
// 堆排序的总体时间复杂度依然是O(nlogn), 但是比上述heapSort1性能更优, 因为创建堆的性能更优
template
void heapSort2(T arr[], int n){

    MaxHeap maxheap = MaxHeap(arr,n);
    for( int i = n-1 ; i >= 0 ; i-- )
        arr[i] = maxheap.extractMax();

}

原地堆排序

数组shiftDown:

// 原始的shiftDown过程
template
void __shiftDown(T arr[], int n, int k){

    while( 2*k+1 < n ){
        int j = 2*k+1;
        if( j+1 < n && arr[j+1] > arr[j] )
            j += 1;

        if( arr[k] >= arr[j] )break;

        swap( arr[k] , arr[j] );
        k = j;
    }
}

// 优化的shiftDown过程, 使用赋值的方式取代不断的swap,
// 该优化思想和我们之前对插入排序进行优化的思路是一致的
template
void __shiftDown2(T arr[], int n, int k){

    T e = arr[k];
    while( 2*k+1 < n ){
        int j = 2*k+1;
        if( j+1 < n && arr[j+1] > arr[j] )
            j += 1;

        if( e >= arr[j] ) break;

        arr[k] = arr[j];
        k = j;
    }

    arr[k] = e;
}

原地堆排序是先

原地堆排序由于没有开辟新内存,效率会好一些

// 不使用一个额外的最大堆, 直接在原数组上进行原地的堆排序
template
void heapSort(T arr[], int n){

    // 注意,此时我们的堆是从0开始索引的
    // 从(最后一个元素的索引-1)/2开始
    // 最后一个元素的索引 = n-1
    for( int i = (n-1-1)/2 ; i >= 0 ; i -- )   //建最大堆
        __shiftDown2(arr, n, i);

    for( int i = n-1; i > 0 ; i-- ){       //每次把最大堆的最大值与最后的叶子结点交换,再将索引点0 shiftdown重新建堆,重复如此,最后得到升序的数组
        swap( arr[0] , arr[i] );
        __shiftDown2(arr, i, 0);
    }
}
索引堆

data数组用来存放数据,index用来进行堆排序,data数组不变。
常用于堆中元素所占内存大小不一时。

// 最大索引堆
template
class IndexMaxHeap{

private:
    Item *data;     // 最大索引堆中的数据
    int *indexes;   // 最大索引堆中的索引

    int count;
    int capacity;

    // 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
    void shiftUp( int k ){

        while( k > 1 && data[indexes[k/2]] < data[indexes[k]] ){
            swap( indexes[k/2] , indexes[k] );
            k /= 2;
        }
    }

    // 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
    void shiftDown( int k ){

        while( 2*k <= count ){
            int j = 2*k;
            if( j + 1 <= count && data[indexes[j+1]] > data[indexes[j]] )
                j += 1;

            if( data[indexes[k]] >= data[indexes[j]] )
                break;

            swap( indexes[k] , indexes[j] );
            k = j;
        }
    }

public:
    // 构造函数, 构造一个空的索引堆, 可容纳capacity个元素
    IndexMaxHeap(int capacity){

        data = new Item[capacity+1];
        indexes = new int[capacity+1];

        count = 0;
        this->capacity = capacity;
    }

    ~IndexMaxHeap(){
        delete[] data;
        delete[] indexes;
    }

    // 返回索引堆中的元素个数
    int size(){
        return count;
    }

    // 返回一个布尔值, 表示索引堆中是否为空
    bool isEmpty(){
        return count == 0;
    }

    // 向最大索引堆中插入一个新的元素, 新元素的索引为i, 元素为item
    // 传入的i对用户而言,是从0索引的
    void insert(int i, Item item){
        assert( count + 1 <= capacity );
        assert( i + 1 >= 1 && i + 1 <= capacity );

        i += 1;
        data[i] = item;
        indexes[count+1] = i;
        count++;

        shiftUp(count);
    }

    // 从最大索引堆中取出堆顶元素, 即索引堆中所存储的最大数据
    Item extractMax(){
        assert( count > 0 );

        Item ret = data[indexes[1]];
        swap( indexes[1] , indexes[count] );
        count--;
        shiftDown(1);
        return ret;
    }

    // 从最大索引堆中取出堆顶元素的索引
    int extractMaxIndex(){
        assert( count > 0 );

        int ret = indexes[1] - 1;
        swap( indexes[1] , indexes[count] );
        count--;
        shiftDown(1);
        return ret;
    }

    // 获取最大索引堆中的堆顶元素
    Item getMax(){
        assert( count > 0 );
        return data[indexes[1]];
    }

    // 获取最大索引堆中的堆顶元素的索引
    int getMaxIndex(){
        assert( count > 0 );
        return indexes[1]-1;
    }

    // 获取最大索引堆中索引为i的元素
    Item getItem( int i ){
        assert( i + 1 >= 1 && i + 1 <= capacity );
        return data[i+1];
    }

    // 将最大索引堆中索引为i的元素修改为newItem
    void change( int i , Item newItem ){

        i += 1;
        data[i] = newItem;

        // 找到indexes[j] = i, j表示data[i]在堆中的位置
        // 之后shiftUp(j), 再shiftDown(j)
        for( int j = 1 ; j <= count ; j ++ )
            if( indexes[j] == i ){
                shiftUp(j);
                shiftDown(j);
                return;
            }
    }

};

在后续的图论中, 无论是最小生成树算法, 还是最短路径算法, 都需要使用索引堆进行优化

索引堆的优化

reverse[i]表示索引i在indexes(堆)中的位置。节省了在修改结点数据change函数的时间,不需要循环for查找索引点indexes[j]=i中的j。


// 最大索引堆
template
class IndexMaxHeap{

private:
    Item *data;     // 最大索引堆中的数据
    int *indexes;   // 最大索引堆中的索引, indexes[x] = i 表示索引i在x的位置
    int *reverse;   // 最大索引堆中的反向索引, reverse[i] = x 表示索引i在x的位置

    int count;
    int capacity;

    // 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
    void shiftUp( int k ){

        while( k > 1 && data[indexes[k/2]] < data[indexes[k]] ){
            swap( indexes[k/2] , indexes[k] );
            reverse[indexes[k/2]] = k/2;
            reverse[indexes[k]] = k;
            k /= 2;
        }
    }

    // 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
    void shiftDown( int k ){

        while( 2*k <= count ){
            int j = 2*k;
            if( j + 1 <= count && data[indexes[j+1]] > data[indexes[j]] )
                j += 1;

            if( data[indexes[k]] >= data[indexes[j]] )
                break;

            swap( indexes[k] , indexes[j] );
            reverse[indexes[k]] = k;
            reverse[indexes[j]] = j;
            k = j;
        }
    }

public:
    // 构造函数, 构造一个空的索引堆, 可容纳capacity个元素
    IndexMaxHeap(int capacity){

        data = new Item[capacity+1];
        indexes = new int[capacity+1];
        reverse = new int[capacity+1];
        for( int i = 0 ; i <= capacity ; i ++ )
            reverse[i] = 0;

        count = 0;
        this->capacity = capacity;
    }

    ~IndexMaxHeap(){
        delete[] data;
        delete[] indexes;
        delete[] reverse;
    }

    // 返回索引堆中的元素个数
    int size(){
        return count;
    }

    // 返回一个布尔值, 表示索引堆中是否为空
    bool isEmpty(){
        return count == 0;
    }

    // 向最大索引堆中插入一个新的元素, 新元素的索引为i, 元素为item
    // 传入的i对用户而言,是从0索引的
    void insert(int i, Item item){
        assert( count + 1 <= capacity );
        assert( i + 1 >= 1 && i + 1 <= capacity );

        // 再插入一个新元素前,还需要保证索引i所在的位置是没有元素的。
        assert( !contain(i) );

        i += 1;
        data[i] = item;
        indexes[count+1] = i;
        reverse[i] = count+1;
        count++;

        shiftUp(count);
    }

    // 从最大索引堆中取出堆顶元素, 即索引堆中所存储的最大数据
    Item extractMax(){
        assert( count > 0 );

        Item ret = data[indexes[1]];
        swap( indexes[1] , indexes[count] );
        reverse[indexes[count]] = 0;
        count--;

        if(count){
            reverse[indexes[1]] = 1;
            shiftDown(1);
        }

        return ret;
    }

    // 从最大索引堆中取出堆顶元素的索引
    int extractMaxIndex(){
        assert( count > 0 );

        int ret = indexes[1] - 1;
        swap( indexes[1] , indexes[count] );
        reverse[indexes[count]] = 0;
        count--;

        if(count) {
            reverse[indexes[1]] = 1;
            shiftDown(1);
        }

        return ret;
    }

    // 获取最大索引堆中的堆顶元素
    Item getMax(){
        assert( count > 0 );
        return data[indexes[1]];
    }

    // 获取最大索引堆中的堆顶元素的索引
    int getMaxIndex(){
        assert( count > 0 );
        return indexes[1]-1;
    }

    // 看索引i所在的位置是否存在元素
    bool contain( int i ){
        assert( i + 1 >= 1 && i + 1 <= capacity );
        return reverse[i+1] != 0;
    }

    // 获取最大索引堆中索引为i的元素
    Item getItem( int i ){
        assert( contain(i) );
        return data[i+1];
    }

    // 将最大索引堆中索引为i的元素修改为newItem
    void change( int i , Item newItem ){   //这里容易看不懂,实际上是把indexes[j]传进来

        assert( contain(i) );
        i += 1;
        data[i] = newItem;

        // 找到indexes[j] = i, j表示data[i]在堆中的位置
        // 之后shiftUp(j), 再shiftDown(j)
//        for( int j = 1 ; j <= count ; j ++ )
//            if( indexes[j] == i ){
//                shiftUp(j);
//                shiftDown(j);
//                return;
//            }

        // 有了 reverse 之后,
        // 我们可以非常简单的通过reverse直接定位索引i在indexes中的位置
        shiftUp( reverse[i] );
        shiftDown( reverse[i] );
    }

};
算法总结

虽然堆排序较其它nlogn级别排序算法慢,但胜在空间复杂度为O(1)。
快排的额外空间logn是递归造成的。
自顶向下的归并排序额外空间是O(logn+n),自底向上的归并排序额外空间是O(n)

你可能感兴趣的:(堆 | 堆排序、优先队列)