双极化(天线)ULA的信道模型

双极化(天线)均匀线性阵列

Uniform Linear Array of M M M dual-polarized antenna elements (如图所示)

双极化(天线)ULA的信道模型_第1张图片

基站有 M M M个双极化天线阵元,终端UE为1根单极化天线,那么上行信道可以表征为:
h u l = [ h u l , H h u l , V ] ∈ C 2 M × 1 \boldsymbol h_{ul} = \left[ \begin{array}{c} \boldsymbol{h}_{ul,H}\\ \boldsymbol{h}_{ul,V}\\ \end{array} \right] \in \mathbb C^{2M \times 1} hul=[hul,Hhul,V]C2M×1

其中,

  • h u l , H ∈ C M × 1 \boldsymbol{h}_{ul,H} \in \mathbb C^{M \times 1} hul,HCM×1 is the channel vector corresponding to the M M M H-polarzied antenna ports
  • h u l , V ∈ C v M × 1 \boldsymbol{h}_{ul,V} \in \mathbb C^{v M \times 1} hul,VCvM×1 is the channel vector corresponding to the M M M V-polarzied antenna ports

回顾ULA阵列的阵列响应向量为(array)
a u l ( ξ ) = [ 1 , e j π ξ , ⋯   , e j π ( M − 1 ) ξ ] ∈ C M × 1 \boldsymbol a_{ul}(\xi) = [1, e^{j \pi \xi}, \cdots, e^{j \pi (M-1) \xi}] \in \mathbb C^{M \times 1} aul(ξ)=[1,eξ,,e(M1)ξ]CM×1

其中 ξ = sin ⁡ ( θ ) \xi = \sin(\theta) ξ=sin(θ),. θ ∈ [ − π / 2 , π / 2 ] \theta \in [-\pi / 2, \pi/2] θ[π/2,π/2]是到达角(Angle of Arrival, AOA),注意这里我们假设 d = λ u l / 2 d = \lambda_{ul}/2 d=λul/2。因此 H- & V- channel vector可以表征为
h u l , H = ∫ − 1 + 1 W H ( ξ ) a u l ( ξ ) d ξ h u l , V = ∫ − 1 + 1 W V ( ξ ) a u l ( ξ ) d ξ \begin{aligned} \boldsymbol{h}_{ul,H} &= \int_{-1}^{+1} W_H(\xi) \boldsymbol a_{ul}(\xi) d \xi \\ \boldsymbol{h}_{ul,V} &= \int_{-1}^{+1} W_V(\xi) \boldsymbol a_{ul}(\xi) d \xi \end{aligned} hul,Hhul,V=1+1WH(ξ)aul(ξ)dξ=1+1WV(ξ)aul(ξ)dξ

其中 W H ( ξ ) , W V ( ξ ) W_H(\xi), W_V(\xi) WH(ξ),WV(ξ)是表征角度增益(angular gain)的随机过程。我们假设 W H , W V W_H, W_V WH,WV是零均值的复高斯过程,具有下面的自相关关系
E [ W H ( ξ ) W H ∗ ( ξ ′ ) ] = γ H ( ξ ) δ ( ξ − ξ ′ ) E [ W V ( ξ ) W V ∗ ( ξ ′ ) ] = γ V ( ξ ) δ ( ξ − ξ ′ ) \begin{aligned} \mathbb E \left [ W_H(\xi) W^*_H(\xi^{\prime}) \right] &= \gamma_H(\xi) \delta(\xi - \xi^{\prime}) \\ \mathbb E \left [ W_V(\xi) W^*_V(\xi^{\prime}) \right] &= \gamma_V(\xi) \delta(\xi - \xi^{\prime}) \end{aligned} E[WH(ξ)WH(ξ)]E[WV(ξ)WV(ξ)]=γH(ξ)δ(ξξ)=γV(ξ)δ(ξξ)

where we have adopted the wide-sense stationary uncorrelated scattering (WSSUS) model, which assumes stationary second order channel statistics (over resonably short time intervals) and uncorrelated angular scattering gains.

γ H , γ V ∈ R + \gamma_H, \gamma_V \in \mathbb R_{+} γH,γVR+分别表示H- & V-的角度功率(along each AOA)。We call these horizontal and vertical angular spread functions (ASFs)。

实际中,H & V的关系一般不是孤立的,两者之间存在信道能量的泄露。因此对于每个AoA, W H ( ξ ) W_H(\xi) WH(ξ) W V ( ξ ) W_V(\xi) WV(ξ)是相关的,满足
E [ W H ( ξ ) W V ( ξ ′ ) ] = ρ ( ξ ) δ ( ξ − ξ ′ ) \mathbb E[W_H(\xi) W_V(\xi^{\prime})] = \rho(\xi) \delta(\xi - \xi^{\prime}) E[WH(ξ)WV(ξ)]=ρ(ξ)δ(ξξ)

其中 ρ ∈ C \rho \in \mathbb C ρC

双极化(天线)ULA的信道模型_第2张图片

我们常把信道向量显式地分为两个部分,一部分是LOS成分(component),另一部分是NLOS成分,构成为
h u l , ( H / V ) = α h u l , ( H / V ) L O S + 1 − α h u l , ( H / V ) N L O S \boldsymbol h_{ul, (H/V)} = \sqrt{\alpha} \boldsymbol h^{LOS}_{ul, (H/V)} + \sqrt{1-\alpha} \boldsymbol h^{NLOS}_{ul, (H/V)} hul,(H/V)=α hul,(H/V)LOS+1α hul,(H/V)NLOS

其中 α ∈ [ 0 , 1 ] \alpha \in [0,1] α[0,1]是一个能量归一化系数。

LOS和NLOS成分分别为:
h u l , ( H / V ) L O S = β u l , ( H / V ) L O S a u l ( ξ L O S ) h u l , ( H / V ) N L O S = ∑ i = 1 p − 1 β u l , ( H / V ) , i N L O S a u l ( ξ N L O S , i ) \begin{aligned} \boldsymbol h^{LOS}_{ul, (H/V)} &= \beta^{LOS}_{ul, (H/V)} \boldsymbol a_{ul} (\xi_{LOS}) \\ \boldsymbol h^{NLOS}_{ul, (H/V)} &= \sum_{i=1}^{p-1} \beta^{NLOS}_{ul, (H/V), i} \boldsymbol a_{ul} (\xi_{NLOS,i}) \end{aligned} hul,(H/V)LOShul,(H/V)NLOS=βul,(H/V)LOSaul(ξLOS)=i=1p1βul,(H/V),iNLOSaul(ξNLOS,i)

其中 ξ L O S , { ξ N L O S , i } i \xi_{LOS}, \{\xi_{NLOS,i}\}_i ξLOS,{ξNLOS,i}i是到达角AOAs, β u l , ( H / V ) L O S , { β u l , ( H / V ) , i N L O S } i \beta^{LOS}_{ul, (H/V)}, \{\beta^{NLOS}_{ul, (H/V), i}\}_i βul,(H/V)LOS,{βul,(H/V),iNLOS}i是复增益(complex-valued gains)。

那么双极化的上行信道可以被表征为:
h u l = ∫ − 1 1 [ a u l ( ξ ) 0 0 a u l ( ξ ) ] [ W H ( ξ ) W V ( ξ ) ] d ξ = ∫ − 1 1 ( I 2 ⊗ a u l ( ξ ) ) w ( ξ ) d ξ \begin{aligned} \boldsymbol h_{ul} &= \int_{-1}^1 \left[ \begin{matrix} \boldsymbol{a}_{ul}\left( \xi \right)& \boldsymbol{0}\\ \boldsymbol{0}& \boldsymbol{a}_{ul}\left( \xi \right)\\ \end{matrix} \right] \left[ \begin{array}{c} W_H\left( \xi \right)\\ W_V\left( \xi \right)\\ \end{array} \right] d \xi \\ &= \int_{-1}^1 \left ( \boldsymbol I_2 \otimes \boldsymbol a_{ul} (\xi) \right ) \boldsymbol w(\xi) d \xi \end{aligned} hul=11[aul(ξ)00aul(ξ)][WH(ξ)WV(ξ)]dξ=11(I2aul(ξ))w(ξ)dξ

其中 w ( ξ ) : = [ W H ( ξ ) , W V ( ξ ) ] T \boldsymbol w(\xi) := [W_H\left( \xi \right), W_V\left( \xi \right)]^T w(ξ):=[WH(ξ),WV(ξ)]T,那么信道的协方差矩阵可以表示为
Σ h u l = E [ h u l h u l H ] = ∫ − 1 1 Γ ( ξ ) ⊗ A u l ( ξ ) d ξ \boldsymbol \Sigma_h^{ul} = \mathbb E \left [ \boldsymbol h_{ul} \boldsymbol h^H_{ul} \right ] = \int_{-1}^1 \boldsymbol \Gamma(\xi) \otimes \boldsymbol A_{ul}(\xi) d \xi Σhul=E[hulhulH]=11Γ(ξ)Aul(ξ)dξ

其中 A u l ( ξ ) = a u l ( ξ ) a u l ( ξ ) H \boldsymbol A_{ul}(\xi) = \boldsymbol a_{ul}(\xi) \boldsymbol a_{ul}(\xi)^H Aul(ξ)=aul(ξ)aul(ξ)H Γ ( ξ ) \boldsymbol \Gamma(\xi) Γ(ξ)定义为
Γ ( ξ ) = E [ w ( ξ ) w ( ξ ) H ] = [ γ H ( ξ ) ρ ( ξ ) ρ ( ξ ) ∗ γ V ( ξ ) ] ∈ C 2 × 2 \boldsymbol \Gamma(\xi) = \mathbb E \left [ \boldsymbol w(\xi) \boldsymbol w(\xi)^H \right ] = \left[ \begin{matrix} \gamma _H\left( \xi \right)& \rho \left( \xi \right)\\ \rho \left( \xi \right) ^*& \gamma _V\left( \xi \right)\\ \end{matrix} \right] \in \mathbb C^{2 \times 2} Γ(ξ)=E[w(ξ)w(ξ)H]=[γH(ξ)ρ(ξ)ρ(ξ)γV(ξ)]C2×2

Γ ( ξ ) \boldsymbol \Gamma(\xi) Γ(ξ)是一个半正定矩阵,我们把 Γ ( ξ ) \boldsymbol \Gamma(\xi) Γ(ξ)称为dual-polarized angular spread function (DP-ASF). DP-ASF captures the angular spectral properties of the channel, i.e. the power density along H and V links and the power leakage density between the two.

[1] M. B. Khalilsarai, T. Yang, S. Haghighatshoar, X. Yi and G. Caire, “Dual-Polarized FDD Massive MIMO: A Comprehensive Framework,” in IEEE Transactions on Wireless Communications, vol. 21, no. 2, pp. 840-854, Feb. 2022, doi: 10.1109/TWC.2021.3099727.

你可能感兴趣的:(通信模型,理论与算法)