Fairseq:
Fairseq是由Facebook AI Research开发的一个序列到序列模型工具包,用于自然语言处理和语音识别任务。它支持各种模型架构,包括卷积神经网络(CNNs)、循环神经网络(RNNs)和Transformer模型。
Fairseq的设计理念是提供灵活、可扩展和高效的工具,以便研究人员和开发人员能够快速构建、训练和部署各种序列到序列模型。Fairseq支持多种训练和推理技术,例如自监督学习、多任务学习、知识蒸馏和模型融合等。
Fairseq已经被广泛应用于自然语言处理和语音识别领域,包括机器翻译、语言建模、语音识别、文本生成、文本分类等任务。同时,Fairseq的源代码也是公开可用的,并且拥有一个活跃的社区,用户可以通过官方文档和GitHub等平台获取相关的支持和资源。
安装:这里选择本地安装,但是要先保证有pytorch和python!
# 先克隆仓库代码
git clone https://github.com/pytorch/fairseq
# 进入文件夹里
cd fairseq
# 执行命令,这个命令我不太清楚什么意思,不过必须要执行,否则之后使用的时候会报错。
# 猜测:安装Fairseq项目到python
pip install --editable ./ -i https://pypi.mirrors.ustc.edu.cn/simple/
使用:可以采用以下两种方法进行开发
1、直接在fairseq项目中修改,添加模块。
2、在自定义文件夹中添加文件,并且使用-user-dir引用。
错误:
其他:有GPU的可以看看这里
#
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
--global-option="--deprecated_fused_adam" --global-option="--xentropy" \
--global-option="--fast_multihead_attn" ./
参数列表:
# --destdir: 预处理后的二进制文件会默认保存在data-bin目录下,可以通过destdir参数将生成的数据存放在其他位置。
# --thresholdsrc/--thresholdtgt: 分别对应源端(source)和目标端(target)的词表的最低词频,词频低于这个阈值的单词将不会出现在词表中,而是统一使用一个unknown标签来代替。
# --nwordssrc/--nwordstgt,源端和目标端词表的大小,在对单词根据词频排序后,取前n个词来构建词表,剩余的单词使用一个统一的unknown标签代替。
# --source-lang: 源
# --target-lang:目标
# --trainpref:训练文件前缀(也用于建立词典),即路径和文件名的前缀。
# --validpref:验证文件前缀。
# --testpref: 测试文件前缀。
# --joined-dictionary: 源端和目标端使用同一个词表,对于相似语言(如英语和西班牙语)来说,有很多的单词是相同的,使用同一个词表可以降低词表和参数的总规模。
# --tgtdict: 重用给定的目标词典
# --srcdict:重用给定的源词典,参数为文件名,即使用已有的词典,而不去根据文本数据中单词的词频去构建词表
# --workers: 并行进程数。
eg: TEXT=iwslt14.tokenized.de-en
fairseq-preprocess --source-lang de --target-lang en \
--trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
--destdir data-bin/iwslt14.tokenized.de-en \
--joined-dictionary --workers 20
参数列表:
# --arch:所使用的模型结构
# --optimizer: 可以选择的优化器:adadelta, adafactor, adagrad, adam, adamax, composite, cpu_adam, lamb, nag, sgd
# --clip-norm: 梯度减少阈值,默认为0
# --lr: 前N个批次的学习率,默认为0.25
# --lr-scheduler: 学习率缩减的方式,可选: cosine, fixed, inverse_sqrt, manual, pass_through, polynomial_decay, reduce_lr_on_plateau, step, tri_stage, triangular,默认为fixed。
# --criterion: 指定使用的损失函数,选择:adaptive_loss, composite_loss, cross_entropy, ctc, fastspeech2, hubert, label_smoothed_cross_entropy, latency_augmented_label_smoothed_cross_entropy, label_smoothed_cross_entropy_with_alignment, label_smoothed_cross_entropy_with_ctc, legacy_masked_lm_loss, masked_lm, model, nat_loss, sentence_prediction, sentence_prediction_adapters, sentence_ranking, tacotron2, speech_to_unit, speech_to_spectrogram, speech_unit_lm_criterion, wav2vec, vocab_parallel_cross_entropy
# --max-tokens: 按照词的数量来分batch,每个batch包含多少个词。
# --fp 16: 若使用的GPU支持半精度,可以通过--fp16来进行混合精度训练,可以极大提高模型训练的速度。通过torch.cuda.get_device_capablity(0)[0]可以确定GPU是否支持半精度(值小于7则不支持,大于7则支持。)
# --no-epoch-checkpoints: 只储存最后和最好的检查点
# --save-dir: 训练过程中保存中间模型,默认为checkpoints。
# --label-smoothing 0.1:将label_smoothed_cross_entropy损失默认为0的label-smoothing值改为0.1
# --reset-dataloader: 如果已设置,则不从检查点重新加载数据加载器状态, 默认值:False
# --reset-meters: 如果设置,则不从检查点加载仪表,默认值:False
# --reset-optimizer:如果设置,则不从检查点加载优化器状态,默认值:False
# --no-progress-bar参数可以改为逐行打印日志,方便保存。默认情况下,每训练100步之后会打印一次
参数列表:
# --gen-subset train:翻译整个训练数据
# --gen-subset: 默认解码测试部分。
# --beam: 设置beam search中的beam size
# --lenpen: 设置beam search中的长度惩罚
# --remove-bpe: 指定对翻译结果后处理,由于在准备数据时,使用了BPE切分,该参数会把BPE切分的词合并为完整的单词。如果不添加该参数,那么输出的翻译结果和BLEU打分都是按照未合并BPE进行的。
# --unkpen: unk惩罚。
数据预处理:Fairseq 包含多个翻译的预处理脚本示例 数据集:IWSLT 2014(德语-英语)、WMT 2014(英语-法语)和WMT 2014年(英语-德语)。要对 IWSLT 数据集进行预处理和二值化,请执行以下操作:
> cd examples/translation/
# 在机器翻译中,需要双语平行数据来进行模型的训练,在这里使用fairseq中提供的数据,这个脚本会下载IWSLT 14 英语和德语的平行数据,并进行分词、BPE等操作。
> bash prepare-iwslt14.sh
>
> cd ../..
> TEXT=examples/translation/iwslt14.tokenized.de-en
# 设置训练文件前缀、验证文件前缀、测试文件前缀等
# data-bin:预处理后的文件保存再哪里
# joined dictionary: 源和目标使用同一个词典,对于相似语言来说,有很多的单词是相同的,使用同一个词表可以降低词表和参数的总规模。
# fairseq-preprocess:将文本数据转化为二进制文件。
> fairseq-preprocess --source-lang de --target-lang en \
--trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
--destdir data-bin/iwslt14.tokenized.de-en
bash prepare-iwslt14.sh 下载IWSLT 14 英语和德语的平行数据,并进行分词、BPE等操作,处理的结果为:
训练:使用fairseq-train来训练一个新模型。以下是一些有效的示例设置 对于 IWSLT 2014 数据集来说:
# arch: 所使用的模型结构
# optimizer:可以选择的优化器
# --clip-norm:梯度减少阈值
# lr:前N个批次的学习率。
# --lr-scheduler:学习率缩减的方式
# criterion:指定使用的损失函数。
# --max--tokens:按照词的数量来分batch,每个batch包含多少个词。
# 训练之后会生成pt后缀的文件,这个文件可以用于后续生成翻译结果。
> mkdir -p checkpoints/fconv
> CUDA_VISIBLE_DEVICES=0 fairseq-train data-bin/iwslt14.tokenized.de-en \
--optimizer nag --lr 0.25 --clip-norm 0.1 --dropout 0.2 --max-tokens 4000 \
--arch fconv_iwslt_de_en --save-dir checkpoints/fconv
生成: 一旦模型经过训练之后,我们就可以使用fairseq-generate方法,即使用训练过的数据来翻译预处理数据。
# --gen-subset
# --beam: 设置beam search中的beam size
# --lenpen: 设置beam search中的长度惩罚
# --remove-bpe: 指定对翻译结果进行后处理,该参数会把BPE切分的词合并起来。
# --path:模型路径
> fairseq-generate data-bin/iwslt14.tokenized.de-en \
--path checkpoints/fconv/checkpoint_best.pt \
--batch-size 128 --beam 5
| [de] dictionary: 35475 types
| [en] dictionary: 24739 types
| data-bin/iwslt14.tokenized.de-en test 6750 examples
| model fconv
| loaded checkpoint trainings/fconv/checkpoint_best.pt
S-721 danke .
T-721 thank you .
...
import torch.nn as nn
from fairseq import utils
from fairseq.models import FairseqEncoder
import torch
from fairseq.models import FairseqDecoder
from fairseq.models import FairseqEncoderDecoderModel, register_model
# Note: the register_model "decorator" should immediately precede the
# definition of the Model class.
class SimpleLSTMEncoder(FairseqEncoder):
def __init__(
self, args, dictionary, embed_dim=128, hidden_dim=128, dropout=0.1,
):
super().__init__(dictionary)
self.args = args
# Our encoder will embed the inputs before feeding them to the LSTM.
self.embed_tokens = nn.Embedding(
num_embeddings=len(dictionary),
embedding_dim=embed_dim,
padding_idx=dictionary.pad(),
)
self.dropout = nn.Dropout(p=dropout)
# We'll use a single-layer, unidirectional LSTM for simplicity.
self.lstm = nn.LSTM(
input_size=embed_dim,
hidden_size=hidden_dim,
num_layers=1,
bidirectional=False,
batch_first=True,
)
def forward(self, src_tokens, src_lengths):
# The inputs to the ``forward()`` function are determined by the
# Task, and in particular the ``'net_input'`` key in each
# mini-batch. We discuss Tasks in the next tutorial, but for now just
# know that *src_tokens* has shape `(batch, src_len)` and *src_lengths*
# has shape `(batch)`.
# Note that the source is typically padded on the left. This can be
# configured by adding the `--left-pad-source "False"` command-line
# argument, but here we'll make the Encoder handle either kind of
# padding by converting everything to be right-padded.
if self.args.left_pad_source:
# Convert left-padding to right-padding.
src_tokens = utils.convert_padding_direction(
src_tokens,
padding_idx=self.dictionary.pad(),
left_to_right=True
)
# Embed the source.
x = self.embed_tokens(src_tokens)
# Apply dropout.
x = self.dropout(x)
# Pack the sequence into a PackedSequence object to feed to the LSTM.
x = nn.utils.rnn.pack_padded_sequence(x, src_lengths, batch_first=True)
# Get the output from the LSTM.
_outputs, (final_hidden, _final_cell) = self.lstm(x)
# Return the Encoder's output. This can be any object and will be
# passed directly to the Decoder.
return {
# this will have shape `(bsz, hidden_dim)`
'final_hidden': final_hidden.squeeze(0),
}
# Encoders are required to implement this method so that we can rearrange
# the order of the batch elements during inference (e.g., beam search).
def reorder_encoder_out(self, encoder_out, new_order):
"""
Reorder encoder output according to `new_order`.
Args:
encoder_out: output from the ``forward()`` method
new_order (LongTensor): desired order
Returns:
`encoder_out` rearranged according to `new_order`
"""
final_hidden = encoder_out['final_hidden']
return {
'final_hidden': final_hidden.index_select(0, new_order),
}
class SimpleLSTMDecoder(FairseqDecoder):
def __init__(
self, dictionary, encoder_hidden_dim=128, embed_dim=128, hidden_dim=128,
dropout=0.1,
):
super().__init__(dictionary)
# Our decoder will embed the inputs before feeding them to the LSTM.
self.embed_tokens = nn.Embedding(
num_embeddings=len(dictionary),
embedding_dim=embed_dim,
padding_idx=dictionary.pad(),
)
self.dropout = nn.Dropout(p=dropout)
# We'll use a single-layer, unidirectional LSTM for simplicity.
self.lstm = nn.LSTM(
# For the first layer we'll concatenate the Encoder's final hidden
# state with the embedded target tokens.
input_size=encoder_hidden_dim + embed_dim,
hidden_size=hidden_dim,
num_layers=1,
bidirectional=False,
)
# Define the output projection.
self.output_projection = nn.Linear(hidden_dim, len(dictionary))
# During training Decoders are expected to take the entire target sequence
# (shifted right by one position) and produce logits over the vocabulary.
# The *prev_output_tokens* tensor begins with the end-of-sentence symbol,
# ``dictionary.eos()``, followed by the target sequence.
def forward(self, prev_output_tokens, encoder_out):
"""
Args:
prev_output_tokens (LongTensor): previous decoder outputs of shape
`(batch, tgt_len)`, for teacher forcing
encoder_out (Tensor, optional): output from the encoder, used for
encoder-side attention
Returns:
tuple:
- the last decoder layer's output of shape
`(batch, tgt_len, vocab)`
- the last decoder layer's attention weights of shape
`(batch, tgt_len, src_len)`
"""
bsz, tgt_len = prev_output_tokens.size()
# Extract the final hidden state from the Encoder.
final_encoder_hidden = encoder_out['final_hidden']
# Embed the target sequence, which has been shifted right by one
# position and now starts with the end-of-sentence symbol.
x = self.embed_tokens(prev_output_tokens)
# Apply dropout.
x = self.dropout(x)
# Concatenate the Encoder's final hidden state to *every* embedded
# target token.
x = torch.cat(
[x, final_encoder_hidden.unsqueeze(1).expand(bsz, tgt_len, -1)],
dim=2,
)
# Using PackedSequence objects in the Decoder is harder than in the
# Encoder, since the targets are not sorted in descending length order,
# which is a requirement of ``pack_padded_sequence()``. Instead we'll
# feed nn.LSTM directly.
initial_state = (
final_encoder_hidden.unsqueeze(0), # hidden
torch.zeros_like(final_encoder_hidden).unsqueeze(0), # cell
)
output, _ = self.lstm(
x.transpose(0, 1), # convert to shape `(tgt_len, bsz, dim)`
initial_state,
)
x = output.transpose(0, 1) # convert to shape `(bsz, tgt_len, hidden)`
# Project the outputs to the size of the vocabulary.
x = self.output_projection(x)
# Return the logits and ``None`` for the attention weights
return x, None
# 注册模型
@register_model('simple_lstm')
class SimpleLSTMModel(FairseqEncoderDecoderModel):
@staticmethod
def add_args(parser):
# Models can override this method to add new command-line arguments.
# Here we'll add some new command-line arguments to configure dropout
# and the dimensionality of the embeddings and hidden states.
parser.add_argument(
'--encoder-embed-dim', type=int, metavar='N',
help='dimensionality of the encoder embeddings',
)
parser.add_argument(
'--encoder-hidden-dim', type=int, metavar='N',
help='dimensionality of the encoder hidden state',
)
parser.add_argument(
'--encoder-dropout', type=float, default=0.1,
help='encoder dropout probability',
)
parser.add_argument(
'--decoder-embed-dim', type=int, metavar='N',
help='dimensionality of the decoder embeddings',
)
parser.add_argument(
'--decoder-hidden-dim', type=int, metavar='N',
help='dimensionality of the decoder hidden state',
)
parser.add_argument(
'--decoder-dropout', type=float, default=0.1,
help='decoder dropout probability',
)
@classmethod
def build_model(cls, args, task):
# Fairseq initializes models by calling the ``build_model()``
# function. This provides more flexibility, since the returned model
# instance can be of a different type than the one that was called.
# In this case we'll just return a SimpleLSTMModel instance.
# Initialize our Encoder and Decoder.
encoder = SimpleLSTMEncoder(
args=args,
dictionary=task.source_dictionary,
embed_dim=args.encoder_embed_dim,
hidden_dim=args.encoder_hidden_dim,
dropout=args.encoder_dropout,
)
decoder = SimpleLSTMDecoder(
dictionary=task.target_dictionary,
encoder_hidden_dim=args.encoder_hidden_dim,
embed_dim=args.decoder_embed_dim,
hidden_dim=args.decoder_hidden_dim,
dropout=args.decoder_dropout,
)
model = SimpleLSTMModel(encoder, decoder)
# Print the model architecture.
print(model)
return model
# We could override the ``forward()`` if we wanted more control over how
# the encoder and decoder interact, but it's not necessary for this
# tutorial since we can inherit the default implementation provided by
# the FairseqEncoderDecoderModel base class, which looks like:
#
# def forward(self, src_tokens, src_lengths, prev_output_tokens):
# encoder_out = self.encoder(src_tokens, src_lengths)
# decoder_out = self.decoder(prev_output_tokens, encoder_out)
# return decoder_out
训练模型前要先下载并且预处理数据:
# Download and prepare the unidirectional data
bash prepare-iwslt14.sh
# Preprocess/binarize the unidirectional data
TEXT=iwslt14.tokenized.de-en
fairseq-preprocess --source-lang de --target-lang en \
--trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
--destdir data-bin/iwslt14.tokenized.de-en \
--joined-dictionary --workers 20
训练模型:训练时间稍微有些久,建议后台运行!
fairseq-train data-bin/iwslt14.tokenized.de-en \
--arch tutorial_simple_lstm \
--encoder-dropout 0.2 --decoder-dropout 0.2 \
--optimizer adam --lr 0.005 --lr-shrink 0.5 \
--max-tokens 12000
生成翻译并且计算在测试集上的分数:
fairseq-generate data-bin/iwslt14.tokenized.de-en \
--path checkpoints/checkpoint_best.pt \
--beam 5 \
--remove-bpe
原decoder的坏处:对于每一个输出token,它计算了解码器隐藏状态的整个序列,我们可以通过缓存之前的隐藏状态来提高训练速度。
增量解码:修改模型以实现 FairseqIncrementalDecoder 接口,增量式 解码器接口允许方法采用额外的关键字参数 (incremental_state) 可用于跨时间步缓存状态。
总结:Fairseq通过增量解码(incremental decoding)提供了更快的推理速度。所谓的增量解码,就是在解码时,将之前tokens处于激活beam状态下的模型状态(model states)缓存起来,以备后用,这样每一个新的token进来,只需要计算新的状态即可。也就是说,如果使用FairseqDecoder接口实现普通的解码器,对于每一个输出,都需要重新整个解码器隐状态,计算复杂度O(n^2)。而使用FairseqIncrementalDecoder接口实现增量解码,就可以实现O(n)的解码速度。
替换掉SimpleLSTMDecoder:结果表明,在测试阶段,时间缩短到原来的3分之1。
import torch
from fairseq.models import FairseqIncrementalDecoder
class SimpleLSTMDecoder(FairseqIncrementalDecoder):
def __init__(
self, dictionary, encoder_hidden_dim=128, embed_dim=128, hidden_dim=128,
dropout=0.1,
):
# This remains the same as before.
super().__init__(dictionary)
self.embed_tokens = nn.Embedding(
num_embeddings=len(dictionary),
embedding_dim=embed_dim,
padding_idx=dictionary.pad(),
)
self.dropout = nn.Dropout(p=dropout)
self.lstm = nn.LSTM(
input_size=encoder_hidden_dim + embed_dim,
hidden_size=hidden_dim,
num_layers=1,
bidirectional=False,
)
self.output_projection = nn.Linear(hidden_dim, len(dictionary))
# We now take an additional kwarg (*incremental_state*) for caching the
# previous hidden and cell states.
def forward(self, prev_output_tokens, encoder_out, incremental_state=None):
if incremental_state is not None:
# If the *incremental_state* argument is not ``None`` then we are
# in incremental inference mode. While *prev_output_tokens* will
# still contain the entire decoded prefix, we will only use the
# last step and assume that the rest of the state is cached.
prev_output_tokens = prev_output_tokens[:, -1:]
# This remains the same as before.
bsz, tgt_len = prev_output_tokens.size()
final_encoder_hidden = encoder_out['final_hidden']
x = self.embed_tokens(prev_output_tokens)
x = self.dropout(x)
x = torch.cat(
[x, final_encoder_hidden.unsqueeze(1).expand(bsz, tgt_len, -1)],
dim=2,
)
# We will now check the cache and load the cached previous hidden and
# cell states, if they exist, otherwise we will initialize them to
# zeros (as before). We will use the ``utils.get_incremental_state()``
# and ``utils.set_incremental_state()`` helpers.
initial_state = utils.get_incremental_state(
self, incremental_state, 'prev_state',
)
if initial_state is None:
# first time initialization, same as the original version
initial_state = (
final_encoder_hidden.unsqueeze(0), # hidden
torch.zeros_like(final_encoder_hidden).unsqueeze(0), # cell
)
# Run one step of our LSTM.
output, latest_state = self.lstm(x.transpose(0, 1), initial_state)
# Update the cache with the latest hidden and cell states.
utils.set_incremental_state(
self, incremental_state, 'prev_state', latest_state,
)
# This remains the same as before
x = output.transpose(0, 1)
x = self.output_projection(x)
return x, None
# The ``FairseqIncrementalDecoder`` interface also requires implementing a
# ``reorder_incremental_state()`` method, which is used during beam search
# to select and reorder the incremental state.
def reorder_incremental_state(self, incremental_state, new_order):
# Load the cached state.
prev_state = utils.get_incremental_state(
self, incremental_state, 'prev_state',
)
# Reorder batches according to *new_order*.
reordered_state = (
prev_state[0].index_select(1, new_order), # hidden
prev_state[1].index_select(1, new_order), # cell
)
# Update the cached state.
utils.set_incremental_state(
self, incremental_state, 'prev_state', reordered_state,
)
# 下一个案例有时间再分析吧,有些许疲惫。
!git clone https://github.com/pytorch/fairseq
%cd /content/fairseq
!pip install --editable ./
%cd /content
! echo $PYTHONPATH
import os
os.environ['PYTHONPATH'] += ":/content/fairseq/"
! echo $PYTHONPATH
在Linux下,建立好simple_lstm.py文件并将代码复制后,需要给与执行权限chomd +x simple_lstm.py, 之后再执行一下该文件(python simple_lstm.py)才算注册模型完成。
1、降低学习率:尝试减小学习率,以更小的步长进行参数更新,减缓训练过程中的梯度变化。可以在训练配置中调整 --lr 参数,例如将其从默认值0.25减小到0.1。(–lr 1e-1)
2、使用梯度裁剪:将梯度值限制在一个固定范围内,以避免其过大或过小。可以在训练配置中调整 --clip-norm 参数,例如将其从默认值0.1增加到1.0。(–clip-norm 1)
3、增加批大小:扩大批量大小可以减小梯度变化的影响,并加快训练过程。可以在训练配置中调整 --max-tokens 参数,例如将其从默认值4096增加到8192。(–max-tokens 8192)
4、–fp16-scale-tolerance=0.25:在降低损耗标度之前留出一定的容差。此设置将允许每四个更新中的一个在降低损失规模之前溢出。
5、禁用使用c10d后端:使用c10d后端是为了支持分布式训练,它可以在多个GPU或者多个机器之间同步参数和梯度。在使用c10d后端时,每个进程会处理一部分数据和梯度,然后将它们合并,更新模型参数。但是,当在单个GPU上进行训练时,使用c10d后端可能会导致梯度溢出的问题。这是因为c10d在计算平均梯度时使用了除法操作,而除数可能非常小,这可能导致梯度的放大,从而导致梯度溢出的问题。
禁用使用c10d后端可以避免这个问题,因为禁用后端后,fairseq将在单个GPU上直接计算并更新梯度,而不涉及分布式计算和参数同步。这样做可以避免除数过小导致的梯度放大问题。但需要注意的是,禁用后端可能会导致训练速度变慢,因为它不能利用多个GPU或者多台机器的计算资源。(–ddp-backend=no_c10d)
注意:对于损失溢出这个问题,没办法去准确判断到底是哪里出了问题,我的解决办法是依次去尝试,后来发现根本没什么用,所以索性就都加进去了,目前来看是可行的,Fairseq还在训练,已经跑了6个小时了,真不容易,对于满世界找错误的我来说简直是喜极而泣。
错误如下:
ERROR: Command errored out with exit status 1:
command: /usr/bin/python3 -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'/home/ubuntu/Bi-SimCut/fairseq/setup.py'"'"'; __file__='"'"'/home/ubuntu/Bi-SimCut/fairseq/setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' develop --no-deps --user --prefix=
cwd: /home/ubuntu/Bi-SimCut/fairseq/
Complete output (36 lines):
running develop
/tmp/pip-build-env-o1nw9uet/overlay/lib/python3.8/site-packages/setuptools/dist.py:788: UserWarning: Usage of dash-separated 'index-url' will not be supported in future versions. Please use the underscore name 'index_url' instead
warnings.warn(
/tmp/pip-build-env-o1nw9uet/overlay/lib/python3.8/site-packages/setuptools/__init__.py:85: _DeprecatedInstaller: setuptools.installer and fetch_build_eggs are deprecated. Requirements should be satisfied by a PEP 517 installer. If you are using pip, you can try `pip install --use-pep517`.
dist.fetch_build_eggs(dist.setup_requires)
/tmp/pip-build-env-o1nw9uet/overlay/lib/python3.8/site-packages/setuptools/dist.py:788: UserWarning: Usage of dash-separated 'index-url' will not be supported in future versions. Please use the underscore name 'index_url' instead
warnings.warn(
/tmp/pip-build-env-o1nw9uet/overlay/lib/python3.8/site-packages/setuptools/command/easy_install.py:144: EasyInstallDeprecationWarning: easy_install command is deprecated. Use build and pip and other standards-based tools.
warnings.warn(
WARNING: The user site-packages directory is disabled.
Checking .pth file support in /home/ubuntu/.local/lib/python3.8/site-packages
/usr/bin/python3 -E -c pass
TEST PASSED: /home/ubuntu/.local/lib/python3.8/site-packages appears to support .pth files
running egg_info
writing fairseq.egg-info/PKG-INFO
writing dependency_links to fairseq.egg-info/dependency_links.txt
writing entry points to fairseq.egg-info/entry_points.txt
writing requirements to fairseq.egg-info/requires.txt
writing top-level names to fairseq.egg-info/top_level.txt
reading manifest file 'fairseq.egg-info/SOURCES.txt'
reading manifest template 'MANIFEST.in'
adding license file 'LICENSE'
writing manifest file 'fairseq.egg-info/SOURCES.txt'
running build_ext
skipping 'fairseq/data/data_utils_fast.cpp' Cython extension (up-to-date)
skipping 'fairseq/data/token_block_utils_fast.cpp' Cython extension (up-to-date)
building 'fairseq.libbleu' extension
x86_64-linux-gnu-gcc -pthread -Wno-unused-result -Wsign-compare -DNDEBUG -g -fwrapv -O2 -Wall -g -fstack-protector-strong -Wformat -Werror=format-security -g -fwrapv -O2 -fPIC -I/usr/include/python3.8 -c fairseq/clib/libbleu/libbleu.cpp -o build/temp.linux-x86_64-cpython-38/fairseq/clib/libbleu/libbleu.o -std=c++11 -O3
x86_64-linux-gnu-gcc -pthread -Wno-unused-result -Wsign-compare -DNDEBUG -g -fwrapv -O2 -Wall -g -fstack-protector-strong -Wformat -Werror=format-security -g -fwrapv -O2 -fPIC -I/usr/include/python3.8 -c fairseq/clib/libbleu/module.cpp -o build/temp.linux-x86_64-cpython-38/fairseq/clib/libbleu/module.o -std=c++11 -O3
fairseq/clib/libbleu/module.cpp:9:10: fatal error: Python.h: No such file or directory
9 | #include <Python.h>
| ^~~~~~~~~~
compilation terminated.
/tmp/pip-build-env-o1nw9uet/overlay/lib/python3.8/site-packages/setuptools/command/install.py:34: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools.
warnings.warn(
error: command '/usr/bin/x86_64-linux-gnu-gcc' failed with exit code 1
----------------------------------------
背景:找了一个虚拟机来安装fairseq报错,看样子是缺少环境
解决:
# 这个错误发生在安装fairseq时,看起来是缺少Python.h头文件,这通常是由于缺少Python开发包导致的。您可以尝试通过以下命令来安装Python开发包:
# 对于Debian/Ubuntu系统:
sudo apt-get install python3-dev
对于Red Hat/CentOS系统:
sudo yum install python3-devel
参考文章:
FaceBook-NLP工具Fairseq漫游指南(1)—命令行工具.
fairseq官方文档.
fairseq官方文档——命令函数详细介绍篇.
fairseq源码分析(一)——fairseq简介与安装
fairseq源码分析(二)——fairseq注册机制
fairseq源码分析(三)——fairseq的task
Fairseq框架学习:官方文档注解
Fairseq-快速可扩展的序列建模工具包
Fairseq框架学习(一)Fairseq 安装与使用
使用Fairseq进行Bart预训练
视频:【FairSeq 自然语言库 】 要不要看看这个,Facebook开源的Pytorch 自然语言模型库
fairseq的使用.
torch官网教程.
fireseq上手——英德机器翻译|使用colab.
总算完结啦,这篇文章几个月前就在写了,断断续续的。写文章的速度也是起起落落落落。