AQS

一、Node

在没有获取到锁时会将当前线程封装成一个node加入队列并循环获取锁

    static final class Node {
        //标记这是一个共享锁
        static final Node SHARED = new Node();
        //标记这是一个排它锁
        static final Node EXCLUSIVE = null;

        //线程是否已经终止/废除了
        static final int CANCELLED =  1;
        //标记当前节点需要被LockSupport.unpart()唤醒
        static final int SIGNAL    = -1;
        //当前线程在条件队列
        static final int CONDITION = -2;
        //无条件传播(tryAcquireShared)
        static final int PROPAGATE = -3;

        //就是上边介绍的那几种状态(具体可以看源码介绍)
        volatile int waitStatus;

       //当前节点的前节点(用来判断前节点是否还在阻塞呢)
        volatile Node prev;

       //当前节点的下一个节点(将来用来唤醒下一个节点)
        volatile Node next;

        volatile Thread thread;

        //节点锁模式(具体功用可查看源码)
        Node nextWaiter;

        //判断是共享锁还是排它锁
        final boolean isShared() {
            return nextWaiter == SHARED;
        }
        ...
    }

二、共享锁和排它锁

通过上面信息我们可以了解到锁有共享模式和排它模式,只需要传入对应的Node类型(Node.SHARED或者Node.EXCLUSIVE)。
常用的排它锁有ReentrantLock,读写锁的写锁
常用的共享锁有CountDownLatch,Semephore,读写锁的读锁等

三、排它锁加锁过程

拿ReentrantLock举例,调用lock();

    public void lock() {
        sync.lock();
    }

默认是非公平锁:

    static final class NonfairSync extends Sync {
        private static final long serialVersionUID = 7316153563782823691L;
        final void lock() {
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }
        protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }
    }

首先会调用compareAndSetState(0, 1),尝试获取锁:

    protected final boolean compareAndSetState(int expect, int update) {
        // See below for intrinsics setup to support this
        return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
    }

如果cas成功,则代表获取到了锁,继续执行setExclusiveOwnerThread(Thread.currentThread());,将当前线程存入独占信息,然后返回,这是成功获取到了锁的过程。
如果失败则代表已经有其他线程获取到锁或者在竞争获取锁,调用acquire(1)

    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

这个方法是AQS里的方法啦,首先它先调用了tryAcquire(arg)尝试一下获取锁,如果这时候获取到了也直接返回(因为它拿到锁啦),失败后调用addWaiter将当前信息封装成Node存入等待Node链尾部,最后调用acquireQueued一直循环直到其拿到锁为止。

tryAcquire方法

    final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            //首先获取到state,state为0代表没有线程获取到锁
            int c = getState();
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            //state不为0,看当前线程是否之前已经获取到锁了(可重入)
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

addWaiter

如果tryAcquire失败的话,首先会调用addWaiter(Node.EXCLUSIVE),传参为EXCLUSIVE,代表这是一个排它锁:

    private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        enq(node);
        return node;
    }

    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

就是一直for循环不断CAS尝试将当前node加入到队尾(如果没有头节点则先初始化一个)

acquireQueued

    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            //无限循环直到return
            for (;;) {
                final Node p = node.predecessor();
                //如果前节点是头节点,尝试获取锁,成功则返回啦
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                //判断如果前节点被阻塞住了,当前节点也应该阻塞,以免占用CPU资源
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

主要是for循环一直尝试获取锁,当发现当前节点的前一个节点是head,也就是说当前节点是第一个有效节点,则尝试获取锁,如果成功获取到锁,则改变下head节点,然后返回了。
如果当前节点没有获取到锁,或者它的前节点不是head,会调用shouldParkAfterFailedAcquire

    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            return true;
        if (ws > 0) {
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

这个方法主要就是判断当前节点的前节点,是否是Node.SIGNAL的,这个在刚开始讲到,这个标识是说明该节点是否已经被LockSupport.part()阻塞住了。

如果前节点是Node.SIGNAL,说明当前节点也应该阻塞(前节点都阻塞住了,自己再循环获取锁没有意义了,而且浪费CPU资源),调用parkAndCheckInterrupt:

    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

四、排它锁解锁

调用lock.unlock():

    public void unlock() {
        sync.release(1);
    }
    
    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

    protected final boolean tryRelease(int releases) {
            int c = getState() - releases;
            //判断当前的线程是否有权限释放锁
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            //重入锁有可能导致status释放一次还大于0
            if (c == 0) {
                free = true;
                //去掉当前线程的排它锁状态,允许其他线程获取锁
                setExclusiveOwnerThread(null);
            }
            //volatile修饰的元素保证其他线程可见
            setState(c);
            return free;
     }

还记得之前获取锁时,只有当前节点才有机会tryAcquire吗?后续的节点都被LockSupport.part()阻塞住了,所以在释放锁后需要我们将后续节点唤醒:

    private void unparkSuccessor(Node node) {
       
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }

五、排它锁里的公平非公平模式

    //公平锁
    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
      //非公平锁
    final void lock() {
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
    }

可见非公平锁就是在公平锁的基础上,首先尝试获取下锁,尝试失败之后的逻辑和公平锁一样~

六、排它锁里的尝试获取锁模式

    public boolean tryLock() {
        return sync.nonfairTryAcquire(1);
    }

    final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

首先说,尝试获取锁逻辑是在非公平锁里实现的(就尝试获取一次,没有啥公平不公平的),直接cas尝试,获取到了就返回。

七、排它锁里的超时获取锁模式

主要是在阻塞等待节点时,调用了LockSupport.parkNanos(this, nanosTimeout)进行有时限的阻塞:

    public boolean tryLock(long timeout, TimeUnit unit)
            throws InterruptedException {
        return sync.tryAcquireNanos(1, unit.toNanos(timeout));
    }

    public final boolean tryAcquireNanos(int arg, long nanosTimeout)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        return tryAcquire(arg) ||
            doAcquireNanos(arg, nanosTimeout);
    }

    private boolean doAcquireNanos(int arg, long nanosTimeout)
            throws InterruptedException {
        if (nanosTimeout <= 0L)
            return false;
        final long deadline = System.nanoTime() + nanosTimeout;
        final Node node = addWaiter(Node.EXCLUSIVE);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return true;
                }
                nanosTimeout = deadline - System.nanoTime();
                if (nanosTimeout <= 0L)
                    return false;
                if (shouldParkAfterFailedAcquire(p, node) &&
                    nanosTimeout > spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if (Thread.interrupted())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

八、排它锁里的可中断获取锁模式

    public final void acquireInterruptibly(int arg)
            throws InterruptedException {
        //如果线程中断,则直接抛异常
        if (Thread.interrupted())
            throw new InterruptedException();
        //先尝试获取锁,doAcquireInterruptibly之前分析过了
        if (!tryAcquire(arg))
            doAcquireInterruptibly(arg);
    }

    private void doAcquireInterruptibly(int arg)
        throws InterruptedException {
        //先封装节点,将节点加入到Node尾部
        final Node node = addWaiter(Node.EXCLUSIVE);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
                //这两个方法之前已经分析过了
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

其实doAcquireInterruptibly()跟之前分析的acquireQueued方法类似

你可能感兴趣的:(AQS)