ElasticSearch(项目中常用的ES)

目录

一、操作索引库(用不到)

1.判断索引库是否存在

2.删除索引库

3.创建索引库

4.小结

二、操作文档(重点)

1.新增文档(数据库新增数据的时候  同步es索引库)

2.查询文档

3.修改文档

4.删除文档

5.批量操作(用于把所有数据的数据同步到ES索引库,先查询出所有然后一条条添加)

6.小结

三、查询文档

1.查询所有

2.全文检索

3.精确查询

①词条查询

②范围查询

4.地理查询

①矩形范围

②圆形范围

5.算分函数 (增加分值,让分值大于别人,排名时会在最前面)

6.复合查询(用于有多个查询条件的时候)

7.排序、分页

8.高亮(几乎所有搜索项目都要加)

四、项目实例,建议直接跳转


零、实现搜索业务,肯定离不开RestHighLevelClient,我们需要把它注册到Spring中作为一个Bean。

@Bean
public RestHighLevelClient client(){
    return new RestHighLevelClient(RestClient.builder(
        HttpHost.create("http://192.168.136.134:9200")
    ));
}

一、操作索引库(用不到)

1.判断索引库是否存在

@Test
void testExistsHotelIndex() throws IOException {
    // 1.创建Request对象
    GetIndexRequest request = new GetIndexRequest("hotel");
    // 2.发送请求
    boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
    // 3.输出
    System.err.println(exists ? "索引库已经存在!" : "索引库不存在!");
}

2.删除索引库

@Test
void testDeleteHotelIndex() throws IOException {
    // 1.创建Request对象
    DeleteIndexRequest request = new DeleteIndexRequest("hotel");
    // 2.发送请求
    client.indices().delete(request, RequestOptions.DEFAULT);
}

3.创建索引库

@Test
void createHotelIndex() throws IOException {
    // 1.创建Request对象
    CreateIndexRequest request = new CreateIndexRequest("hotel");
    // 2.准备请求的参数:DSL语句
    request.source(HotelConstants.MAPPING_TEMPLATE, XContentType.JSON);
    // 3.发送请求
    client.indices().create(request, RequestOptions.DEFAULT);
}

4.小结

索引库操作的基本步骤:

- 初始化`RestHighLevelClient`
- 创建`XxxIndexRequest`。XXX是Get、Create、Delete
- 准备参数(Create需要)
- 发送请求。调用`RestHighLevelClient.indices().xxx()`方法,xxx是exists、create、delete

二、操作文档(重点)

1.新增文档(数据库新增数据的时候  同步es索引库)

    //添加文档
    @Test
    public void testAddDocument() throws Exception {
        //1 准备文档数据
        // 1-1 根据id查询酒店数据
        Hotel hotel = hotelMapper.selectById(61083L);
        // 1-2 转为文档实体类型
        HotelDoc hotelDoc = new HotelDoc(hotel);
        // 1-3 将hotelDoc转为json
        String json = JSON.toJSONString(hotelDoc);

        //2 创建request
        IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());
        request.source(json, XContentType.JSON);

        //3 发送请求
        client.index(request, RequestOptions.DEFAULT);
    }

2.查询文档

    //根据id查询文档
    @Test
    public void testGetDocumentById()throws Exception{
        // 1.创建request
        GetRequest request = new GetRequest("hotel", "61083");
        // 2.发送请求,得到响应
        GetResponse response = client.get(request, RequestOptions.DEFAULT);
        // 3.解析响应
        String json = response.getSourceAsString();
        // 4.json转为hotelDoc
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        System.out.println(hotelDoc);
    }

3.修改文档

    //根据id修改指定文档
    @Test
    public void testUpdateDocument() throws Exception {
        // 1.创建request
        UpdateRequest request = new UpdateRequest("hotel", "61083");
        //2. 设置更新内容
        Map map = new HashMap<>();
        map.put("price", 339);
        map.put("starName", "四钻");
        request.doc(map);
        // 3.发送请求
        client.update(request, RequestOptions.DEFAULT);
    }

4.删除文档

    //删除文档
    @Test
    void testDeleteDocument() throws IOException {
        // 1.创建Request
        DeleteRequest request = new DeleteRequest("hotel", "61083");
        // 2.发送请求
        client.delete(request, RequestOptions.DEFAULT);
    }

5.批量操作(用于把所有数据的数据同步到ES索引库,先查询出所有然后一条条添加)

	//批量操作
    @Test
    public void testBulkRequest() throws Exception {
        // 查询所有酒店数据
        List hotelList = hotelMapper.selectList(null);

        // 1.创建request
        BulkRequest request = new BulkRequest();
        // 2.准备DSL
        for (Hotel hotel : hotelList) {
            // 2-1 转为文档类型
            HotelDoc hotelDoc = new HotelDoc(hotel);
            // 2-2 转为json
            String json = JSON.toJSONString(hotelDoc);
            // 2-3 新增document
            request.add(
                    new IndexRequest("hotel")
                            .id(hotelDoc.getId().toString())
                            .source(json, XContentType.JSON)
            );
        }
        // 3.发送请求
        client.bulk(request, RequestOptions.DEFAULT);
    }

6.小结

文档操作的基本步骤:

- 初始化`RestHighLevelClient`
- 创建`XxxRequest`。XXX是Index、Get、Update、Delete、Bulk
- 准备参数(Index、Update、Bulk时需要)
- 发送请求。调用`RestHighLevelClient..xxx()`方法,xxx是index、get、update、delete、bulk
- 解析结果(Get时需要)

三、查询文档

1.查询所有

    //查询
    @Test
    public void testMatchAll() throws IOException {
        //1. 构建查询请求
        SearchRequest request = new SearchRequest("hotel");

        //2. 设置查询条件
        request.source().query(
                QueryBuilders.matchAllQuery() //match_all
        );

        //3. 执行请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);

        //4. 解析结果
        System.out.println("结果数量:" + response.getHits().getTotalHits().value);//hits.total.value
        SearchHit[] searchHitArr = response.getHits().getHits();
        for (SearchHit searchHit : searchHitArr) {
            String source = searchHit.getSourceAsString();//hits.hits.get(n).source
            System.out.println(JSON.parseObject(source, HotelDoc.class));
        }
    }


elasticsearch返回的结果是一个JSON字符串,结构包含:

- `hits`:命中的结果
 - `total`:总条数,其中的value是具体的总条数值
 - `max_score`:所有结果中得分最高的文档的相关性算分
 - `hits`:搜索结果的文档数组,其中的每个文档都是一个json对象
   - `_source`:文档中的原始数据,也是json对象

因此,我们解析响应结果,就是逐层解析JSON字符串,流程如下:

- `SearchHits`:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果
 - `SearchHits.getTotalHits().value`:获取总条数信息
 - `SearchHits.getHits()`:获取SearchHit数组,也就是文档数组
   - `SearchHit.getSourceAsString()`:获取文档结果中的_source,也就是原始的json文档数据

2.全文检索

    //查询 match
    @Test
    public void testMatch() throws IOException {
        //1. 构建查询请求
        SearchRequest request = new SearchRequest("hotel");

        //2. 设置查询条件
        request.source().query(
                QueryBuilders.matchQuery("all", "外滩如家") //match
        );

        //3. 执行请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);

        //4. 解析结果
        System.out.println("结果数量:" + response.getHits().getTotalHits().value);
        SearchHit[] searchHitArr = response.getHits().getHits();
        for (SearchHit searchHit : searchHitArr) {
            String source = searchHit.getSourceAsString();
            System.out.println(JSON.parseObject(source, HotelDoc.class));
        }
    }

    //查询 multi_match
    @Test
    public void testMultiMatch() throws IOException {
        //1. 构建查询请求
        SearchRequest request = new SearchRequest("hotel");

        //2. 设置查询条件
        request.source().query(
                QueryBuilders.multiMatchQuery("外滩如家", "brand", "business", "name")
        );

        //3. 执行请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);

        //4. 解析结果
        System.out.println("结果数量:" + response.getHits().getTotalHits().value);
        SearchHit[] searchHitArr = response.getHits().getHits();
        for (SearchHit searchHit : searchHitArr) {
            String source = searchHit.getSourceAsString();
            System.out.println(JSON.parseObject(source, HotelDoc.class));
        }
    }

3.精确查询

①词条查询

    //词条查询 term
    @Test
    public void testTerm() throws IOException {
        //1. 构建查询请求
        SearchRequest request = new SearchRequest("hotel");

        //2. 设置查询条件
        request.source().query(
                QueryBuilders.termQuery("city", "北京")
        );

        //3. 执行请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);

        //4. 解析结果
        System.out.println("结果数量:" + response.getHits().getTotalHits().value);
        SearchHit[] searchHitArr = response.getHits().getHits();
        for (SearchHit searchHit : searchHitArr) {
            String source = searchHit.getSourceAsString();
            System.out.println(JSON.parseObject(source, HotelDoc.class));
        }
    }

②范围查询

//范围查询 range
@Test
public void testRange() throws IOException {
    //1. 构建查询请求
    SearchRequest request = new SearchRequest("hotel");

    //2. 构建条件,并添加到查询请求
    request.source().query(
                rangeQuery("price").gte(1000).lte(2000)
    );

    //3. 执行请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);

    //4. 解析结果
    System.out.println("结果数量:" + response.getHits().getTotalHits().value);
    SearchHit[] searchHitArr = response.getHits().getHits();
    for (SearchHit searchHit : searchHitArr) {
        String source = searchHit.getSourceAsString();
        System.out.println(JSON.parseObject(source, HotelDoc.class));
    }
}

4.地理查询

矩形范围

   //矩形范围查询 geo_bounding_box
    @Test
    public void testGeoBoundingBox() throws IOException {
        //1. 构建查询请求
        SearchRequest request = new SearchRequest("hotel");

        //2. 设置查询条件
        request.source().query(
                QueryBuilders.geoBoundingBoxQuery("location")
                        .setCorners(new GeoPoint(40.08, 116.47), new GeoPoint(39.9, 116.405))
        );

        //3. 执行请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);

        //4. 解析结果
        System.out.println("结果数量:" + response.getHits().getTotalHits().value);
        SearchHit[] searchHitArr = response.getHits().getHits();
        for (SearchHit searchHit : searchHitArr) {
            String source = searchHit.getSourceAsString();
            System.out.println(JSON.parseObject(source, HotelDoc.class));
        }
    }

②圆形范围

    //矩形圆形查询 geo_distance
    @Test
    public void testGeoDistance() throws IOException {
        //1. 构建查询请求
        SearchRequest request = new SearchRequest("hotel");

        //2. 设置查询条件
        request.source().query(
                QueryBuilders.geoDistanceQuery("location")
                        .point(39.9, 116.405)//设置圆心坐标
                        .distance("15km")//设置半径
        );

        //3. 执行请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);

        //4. 解析结果
        System.out.println("结果数量:" + response.getHits().getTotalHits().value);
        SearchHit[] searchHitArr = response.getHits().getHits();
        for (SearchHit searchHit : searchHitArr) {
            String source = searchHit.getSourceAsString();
            System.out.println(JSON.parseObject(source, HotelDoc.class));
        }
    }

5.算分函数 (增加分值,让分值大于别人,排名时会在最前面)

    //算分函数
    @Test
    public void testFunctionScore() throws IOException {
        //1. 构建查询请求
        SearchRequest request = new SearchRequest("hotel");

        //2. 设置查询条件
        request.source().query(
                QueryBuilders.functionScoreQuery(
                        QueryBuilders.matchQuery("all", "北京"),//设置查询条件
                        new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{ //设置算分函数
                                new FunctionScoreQueryBuilder.FilterFunctionBuilder(
                                        QueryBuilders.termQuery("brand", "凯悦"),
                                        ScoreFunctionBuilders.weightFactorFunction(10)
                                )

                        }
                ).boostMode(CombineFunction.MULTIPLY) //设置算法策略
        );

        //3. 执行请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);

        //4. 解析结果
        System.out.println("结果数量:" + response.getHits().getTotalHits().value);
        SearchHit[] searchHitArr = response.getHits().getHits();
        for (SearchHit searchHit : searchHitArr) {
            String source = searchHit.getSourceAsString();
            System.out.println(JSON.parseObject(source, HotelDoc.class));
        }
    }

6.复合查询(用于有多个查询条件的时候)

    //布尔查询
    @Test
    public void testBoolean() throws IOException {
        //1. 构建查询请求
        SearchRequest request = new SearchRequest("hotel");

        //2. 设置查询条件
        request.source().query(
                QueryBuilders.boolQuery().must(
                        QueryBuilders.termQuery("name", "如家")
                ).mustNot(
                        QueryBuilders.rangeQuery("price").gte(400)
                ).filter(
                        QueryBuilders.geoDistanceQuery("location")
                                .point(39.9, 116.405)//设置圆心坐标
                                .distance("10km")//设置半径
                )
        );

        //3. 执行请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);

        //4. 解析结果
        System.out.println("结果数量:" + response.getHits().getTotalHits().value);
        SearchHit[] searchHitArr = response.getHits().getHits();
        for (SearchHit searchHit : searchHitArr) {
            String source = searchHit.getSourceAsString();
            System.out.println(JSON.parseObject(source, HotelDoc.class));
        }
    }

7.排序、分页

 	// 排序 分页
    @Test
    public void testPageAndSort() throws IOException {
        //1. 构建查询请求
        SearchRequest request = new SearchRequest("hotel");

        //2. 设置查询条件
        request.source().query(QueryBuilders.matchAllQuery());
        request.source().sort("price", SortOrder.ASC);//排序,按照价格正序排
        request.source().from(0).size(10);//分页,从0查,查10个;

        //3. 执行请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);

        //4. 解析结果
        System.out.println("结果数量:" + response.getHits().getTotalHits().value);
        SearchHit[] searchHitArr = response.getHits().getHits();
        for (SearchHit searchHit : searchHitArr) {
            String source = searchHit.getSourceAsString();
            System.out.println(JSON.parseObject(source, HotelDoc.class));
        }
    }

8.高亮(几乎所有搜索项目都要加)

    //高亮
    @Test
    public void testHighLight() throws IOException {
        //1. 构建查询请求
        SearchRequest request = new SearchRequest("hotel");

        //2. 设置查询条件
        request.source().query(QueryBuilders.matchQuery("all", "如家"));

        //3. 设置高亮效果
        request.source().highlighter(
                new HighlightBuilder()
                        .field("name")
                        .preTags("")
                        .postTags("").
                        requireFieldMatch(false)
        );

        //4. 执行请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);

        //5. 解析结果
        SearchHit[] searchHits = response.getHits().getHits();
        for (SearchHit searchHit : searchHits) {
            //没有效果的对象
            HotelDoc hotelDoc = JSON.parseObject(searchHit.getSourceAsString(), HotelDoc.class);
            //解析效果,替换上面对象中的title的值
            String name = (searchHit.getHighlightFields().get("name").getFragments())[0].toString();
            hotelDoc.setName(name);

            System.out.println(hotelDoc);
        }
    }

四、项目实例,建议直接跳转

    @Override
    public PageResult list(RequestParams requestParams) throws IOException {

        //1. 构建查询请求
        SearchRequest request = new SearchRequest("hotel");

        //2. 设置查询条件
        //2-1创建复合查询
        BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();

        //2-2 获取搜索关键字, 设置为查询条件
        String key = requestParams.getKey();
        if (StringUtils.isEmpty(key)) {
            boolQuery.must(QueryBuilders.matchAllQuery());
        } else {
            boolQuery.must(QueryBuilders.matchQuery("all", key));
        }

        //2-3 获取城市、星级、品牌、价格,使用过滤语法筛选
        // 城市
        if (StrUtil.isNotEmpty(requestParams.getCity())) {
            boolQuery.filter(QueryBuilders.termQuery("city", requestParams.getCity()));
        }
        // 星级
        if (StrUtil.isNotEmpty(requestParams.getStarName())) {
            boolQuery.filter(QueryBuilders.termQuery("starName", requestParams.getStarName()));
        }
        // 品牌
        if (StrUtil.isNotEmpty(requestParams.getBrand())) {
            boolQuery.filter(QueryBuilders.termQuery("brand", requestParams.getBrand()));
        }
        // 价格
        if (requestParams.getMinPrice() != null && requestParams.getMaxPrice() != null) {
            boolQuery.filter(QueryBuilders.rangeQuery("price").gte(requestParams.getMinPrice()).lte(requestParams.getMaxPrice()));
        }

        //2-4 使用算分函数 提供广告酒店的排名
        FunctionScoreQueryBuilder functionScoreQuery = QueryBuilders.functionScoreQuery(boolQuery,
                new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{
                        new FunctionScoreQueryBuilder.FilterFunctionBuilder(
                                QueryBuilders.termQuery("isAD", true),
                                ScoreFunctionBuilders.weightFactorFunction(5))
                }
        );

        request.source().query(functionScoreQuery);

        //3. 设置分页
        Integer pageNum = requestParams.getPage();
        Integer pageSize = requestParams.getSize();
        request.source().from((pageNum - 1) * pageSize).size(pageSize);

        //4. 设置排序
        String location = requestParams.getLocation();
        if (StrUtil.isNotEmpty(location)) {
            request.source().sort(
                    SortBuilders.geoDistanceSort("location", new GeoPoint(location))//设置核心坐标位置
                            .order(SortOrder.ASC) //设置排序方式
                            .unit(DistanceUnit.KILOMETERS)// 单位
            );
        }

        //5. 设置高亮
        request.source().highlighter(
                new HighlightBuilder().field("name").requireFieldMatch(false)
        );

        //6. 发起请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);

        //7. 处理结果
        return handleResponse(response);
    }

五、没用

# 测试默认分词器
GET /_analyze
{
  "analyzer": "standard",
  "text": "程序员学习java太棒了"
}


# 测试IK分词器
GET /_analyze
{
  "analyzer": "ik_smart",
  "text": "程序员学习java太棒了"
}

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "程序员学习java太棒了"
}


GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "程序员的Java就业超过90%,奥力给了!"
}



# 创建索引库
PUT /course

# 查看索引库
GET /course

# 删除索引库
DELETE /course






# 创建索引库
PUT /course
# 自定义映射
PUT /course/_mapping/
{
  "properties":{
    "title":{
      "type":"text",
      "analyzer":"ik_max_word"
    },
    "images":{
      "type":"keyword",
      "index":false
    },
    "price":{
      "type":"float"
    },
    "name":{
      "properties":{
        "firstName":{
          "type":"keyword"
        },
        "lastName":{
          "type":"keyword"
        }
      }
    }
  }
}
# 查看映射
GET /course/_mapping

 
 
# 创建索引库的时候同时设置映射
PUT /course/
{
  "mappings": {
      "properties":{
      "title":{
        "type":"text",
        "analyzer":"ik_max_word"
      },
      "images":{
        "type":"keyword",
        "index":false
      },
      "price":{
        "type":"float"
      },
      "name":{
        "properties":{
          "firstName":{
            "type":"keyword"
          },
          "lastName":{
            "type":"keyword"
          }
        }
      }
    }
  }
}


# 创建文档
POST /course/_doc/1
{
  "title":"小米手机",
  "price":2000,
  "images":"http://image.xiaomi.com/1.jpg",
  "name":{
    "firstName":"三",
    "lastName":"张"
  }
}

# 创建文档
POST /course/_doc
{
  "title":"华为手机",
  "price":3000,
  "images":"http://image.huawei.com/1.jpg",
  "name":{
    "firstName":"四",
    "lastName":"李"
  }
}


# 根据主键查询
GET /course/_doc/1
GET /course/_doc/Wn37GoMBJhQmYmwV_1pK


# 全量修改,语法跟新增一致
POST /course/_doc/1
{
  "title":"小米手机",
  "price":2500,
  "images":"http://image.xiaomi.com/1.jpg",
  "name":{
    "firstName":"三",
    "lastName":"张"
  }
}


# 增量修改 
POST /course/_update/1
{
  "doc": {
      "title":"大米手机",
      "price":2500
  }
}


# 删除
DELETE /course/_doc/1



# 查询所有
GET /hotel/_search
{
  "query": {
    "match_all": {}
  }
}


# 全文检索(分词) 针对于一个字段
GET /hotel/_search
{
  "query": {
    "match": {
      "all": "外滩如家"
    }
  }
}

# 全文检索(分词) 针对于多个字段
GET /hotel/_search
{
  "query": {
    "multi_match": {
      "query": "外滩如家",
      "fields": ["name","brand","business"]
    }
  }
}

# 精确查询(term)
GET /hotel/_search
{
  "query": {
    "term": {
      "city": {
        "value": "北京"
      }
    }
  }
}

# 精确查询(range)
GET /hotel/_search
{
  "query": {
    "range": {
      "price": {
        "gte": 1000,
        "lte": 2000
      }
    }
  }
}


# 矩形范围
GET /hotel/_search
{
  "query": {
    "geo_bounding_box":{
      "location": {
        "top_left": {
          "lat": 40.08,
          "lon": 116.47
        },
        "bottom_right": {
          "lat": 39.9,
          "lon": 116.405
        }
      }
    }
  }
}


# 圆形范围
GET /hotel/_search
{
  "query": {
    "geo_distance":{
      "distance":"15km",
      "location":"39.9,116.405"
    }
  }
}




# 默认查询
GET /hotel/_search
{
  "query": {
    "match": {
      "all": "北京"
    }
  }
}

# 算分函数查询
GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {
        "match": {
          "all": "北京"
        }
      },
      "functions": [
        {
          "filter": {
            "term": {
              "brand": "凯悦"
            }
          },
          "weight": 20
        }
      ],
      "boost_mode": "multiply"
    }
  }
}

# 复合查询
# 需求:搜索名字包含“如家”,价格不高于400,在坐标39.9,116.405周围10km范围内的酒店
GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "term": {
            "name": {
              "value": "如家"
            }
          }
        }
      ],
      "must_not": [
        {
          "range": {
            "price": {
              "gt": 400
            }
          }
        }
      ],
      "filter": [
        {
          "geo_distance": {
            "distance": "10km",
            "location": {
              "lat": 39.9,
              "lon": 116.405
            }
          }
        }
      ]
    }
  }
}


# 按照价格正序排列
GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "price": {
        "order": "asc"
      }
    },
    {
      "score": "desc"
    }
  ]
}


# 按照距离远近排列(需要指定的是参考点)
GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "_geo_distance": {
        "location": {
          "lat": 39.91512,
          "lon": 116.40396
        },
        "order": "asc"
      }
    }
  ]
}


# 分页
GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 9990,
  "size": 11
}


# 高亮
GET /hotel/_search
{
  "query": {
    "match": {
      "name": "如家"
    }
  },
  "highlight": {
    "fields": {
      "name":{
        "pre_tags":"",
        "post_tags":""
      }

    }
  }
}
GET /hotel/_search
{
  "query": {
    "match": {
      "all": "如家"
    }
  },
  "highlight": {
    "fields": {
      "name":{
        "pre_tags":"",
        "post_tags":"",
        "require_field_match": "false"
      }

    }
  }
}



#聚合为桶
GET /hotel/_search
{
  "query":{ //搜索条件
      "range": {
          "price":{
            "lte": 500
          } 
      }
  }, 
  "size": 0, //不查询具体的数据  
  "aggs": { //声明这是一个聚合查询,是aggregations的缩写
    "brandAgg": { //给这次聚合起一个名字,可任意指定
      "terms": { //聚合的类型,这里选择terms,是根据词条内容(这里是品牌)划分
        "field": "brand", //按照哪个字段分组
        "size": 10, //显示多少条聚合结果  
        "order": {
           "_count": "asc" //分组之后可以根据数量排序
        }
      }
    }
  }
}


#桶内度量
GET /hotel/_search
{
  "query":{
      "match_all": {}
  }, 
  "size": 0, //不查询具体的数据    
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand", //按照哪个字段分组
        "order": {
           "scoreAgg.avg": "desc" //根据指定的统计项排序
        }
      },
      "aggs":{  //是brands聚合的子聚合,也就是分组后对每组分别计算
          "scoreAgg": {//聚合名称
            "stats": {//聚合类型,这里stats可以计算min、max、avg等
              "field":"score"//聚合字段,这里是score
            }
          }
        }
    }
  }
}



# 设置分词器
PUT /test
{
  "settings": {
    "analysis": {
      "analyzer": { 
        "my_analyzer": { 
          "tokenizer": "ik_max_word",
          "filter": "py"
        }
      },
      "filter": {
        "py": { 
          "type": "pinyin",
          "keep_full_pinyin": false,
          "keep_joined_full_pinyin": true,
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "name":{
        "type": "text",
        "analyzer": "my_analyzer",
        "search_analyzer": "ik_smart"
      }
    }
  }
}

# 创建模拟数据
POST /test/_doc/1
{
  "id": 1,
  "name": "狮子"
}
POST /test/_doc/2
{
  "id": 2,
  "name": "虱子"
}

# 重新查询
GET /test/_search
{
  "query": {
    "match": {
      "name": "shizi"
    }
  }
}

GET /test/_search
{
  "query": {
    "match": {
      "name": "狮子"
    }
  }
}

你可能感兴趣的:(elasticsearch,java,大数据)