C++ 11右值引用、移动语义和完美转发

左值、右值

左值是指表达式结束后依然存在的持久化对象,右值是指表达式结束时就不再存在的临时对象。所有的具名变量或者对象都是左值,而右值不具名。很难得到左值和右值的真正定义,但是有一个可以区分左值和右值的便捷方法:看能不能对表达式取地址,如果能,则为左值,否则为右值。 

int i=0;// i是左值, 0是右值

class Base 
{
  public:
    int base;
};

Base getBase()
{
    return Base();
}

Base b = Base();   // b是左值  getBase()的返回值是右值(临时变量)

左值引用、右值引用 

C++98中的引用很常见了,就是给变量取了个别名,在C++11中,因为增加了右值引用(rvalue reference)的概念,所以c++98中的引用都称为了左值引用(lvalue reference)。C++11中的右值引用使用的符号是&&。

int a = 1;
int& b = a;            //b是a的别名,a是左值。
int& c = 1;            //编译错误! 1是右值,不能够使用左值引用

int&& d = 1;           //实质上就是将不具名(匿名)变量取了个别名
int&& e = a;           //编译错误!a是左值,不能将一个左值复制给一个右值引用

class Base 
{
  public:
    int base;
};

Base getBase()
{
    return Base();
}

Base&& base = getBase();   //getBase()的返回值是右值(临时变量)

getBase返回的右值本来在表达式语句结束后,其生命也就该终结了(因为是临时变量),而通过右值引用,该右值又重获新生,其生命期将与右值引用类型变量base的生命期一样,只要base还活着,该右值临时变量将会一直存活下去。实际上就是给那个临时变量取了个名字。

注意:这里base的类型是右值引用类型(int &&),但是如果从左值和右值的角度区分它,它实际上是个左值。因为可以对它取地址,而且它还有名字,是一个已经命名的右值。

总结一下,其中T是一个具体类型:

1.左值引用, 使用 T&, 只能绑定左值

2.右值引用, 使用 T&&, 只能绑定右值

3.常量左值, 使用 const T&, 既可以绑定左值又可以绑定右值

4.已命名的右值引用,编译器会认为是个左值

5.编译器有返回值优化,但不要过于依赖

移动构造和移动赋值

#include 
#include 
#include 
using namespace std;

class MyString
{
public:
    static size_t CCtor; //统计调用拷贝构造函数的次数
    static size_t MCtor; //统计调用移动构造函数的次数
    static size_t CAsgn; //统计调用拷贝赋值函数的次数
    static size_t MAsgn; //统计调用移动赋值函数的次数

public:
    // 构造函数
   MyString(const char* cstr=0)
   {
       if (cstr) 
       {
          m_data = new char[strlen(cstr)+1];
          strcpy(m_data, cstr);
       }
       else 
       {
          m_data = new char[1];
          *m_data = '\0';
       }
   }

   // 拷贝构造函数
   MyString(const MyString& str)
   {
       CCtor ++;
       m_data = new char[ strlen(str.m_data) + 1 ];
       strcpy(m_data, str.m_data);
   }
   // 移动构造函数
   MyString(MyString&& str) noexcept
       :m_data(str.m_data) 
   {
       MCtor ++;
       str.m_data = nullptr; //不再指向之前的资源了
   }

   // 拷贝赋值函数 =号重载
   MyString& operator=(const MyString& str)
   {
       CAsgn ++;
       if (this == &str) // 避免自我赋值!!
          return *this;

       delete[] m_data;
       m_data = new char[ strlen(str.m_data) + 1 ];
       strcpy(m_data, str.m_data);
       return *this;
   }

   // 移动赋值函数 =号重载
   MyString& operator=(MyString&& str) noexcept
   {
       MAsgn ++;
       if (this == &str) // 避免自我赋值!!
          return *this;

       delete[] m_data;
       m_data = str.m_data;
       str.m_data = nullptr; //不再指向之前的资源了
       return *this;
   }

   ~MyString() 
   {
       delete[] m_data;
   }

   char* get_c_str() const { return m_data; }
private:
   char* m_data;
};

size_t MyString::CCtor = 0;
size_t MyString::MCtor = 0;
size_t MyString::CAsgn = 0;
size_t MyString::MAsgn = 0;
int main()
{
    vector vecStr;  
    vecStr.reserve(1000); //先分配好1000个空间
    for(int i=0;i<1000;i++)
    {
        vecStr.push_back(MyString("hello"));//调用的是移动构造函数
    }
    cout << "CCtor = " << MyString::CCtor << endl;
    cout << "MCtor = " << MyString::MCtor << endl;
    cout << "CAsgn = " << MyString::CAsgn << endl;
    cout << "MAsgn = " << MyString::MAsgn << endl;

    //vector vecStr2;
    //vecStr2.reserve(1000); //先分配好1000个空间
    //for(int i=0;i<1000;i++)
    //{
    //    MyString tmp("hello");
    //    vecStr2.push_back(tmp); //调用的是拷贝构造函数
    //}

    //vector vecStr3;
    //vecStr3.reserve(1000); //先分配好1000个空间
    //for(int i=0;i<1000;i++)
    //{
    //    MyString tmp("hello");
    //    vecStr3.push_back(std::move(tmp)); //调用的是移动构造函数
    //}
}

/* 结果
CCtor = 0
MCtor = 1000
CAsgn = 0
MAsgn = 0
*/

拷贝构造的参数是const MyString& str,是常量左值引用,而移动构造的参数是MyString&& str,是右值引用。

MyString("hello")是个临时对象,是个右值,优先进入移动构造函数而不是拷贝构造函数。而移动构造函数与拷贝构造不同,它并不是重新分配一块新的空间,将要拷贝的对象复制过来,而是"偷"了过来,将自己的指针指向别人的资源,然后将别人的指针修改为nullptr。

C++11提供了std::move()方法来将左值转换为右值。

MyString str1("hello"); //调用构造函数
MyString str2("world"); //调用构造函数
MyString str3(str1); //调用拷贝构造函数
MyString str4(std::move(str1)); // 调用移动构造函数,此时str1的内部指针已经失效了!不要使用

MyString str5;
str5 = str2; //调用拷贝赋值函数

MyString str6;
str6 = std::move(str2); // str2的内容也失效了,不要再使用

如果我们没有提供移动构造函数,只提供了拷贝构造函数,std::move()会失效但是不会发生错误,因为编译器找不到移动构造函数就去寻找拷贝构造函数,也这是拷贝构造函数的参数是const T&常量左值引用的原因!

C++11中的所有容器都实现了move语义,move只是转移了资源的控制权,本质上是将左值强制转化为右值使用,以用于移动拷贝或赋值,避免对含有资源的对象发生无谓的拷贝。move对于拥有如内存、文件句柄等资源的成员的对象有效,如果是一些基本类型,如int和char[10]数组等,如果使用move,仍会发生拷贝(因为没有对应的移动构造函数),所以说move对含有资源的对象说更有意义。

universal references(通用引用)

当右值引用和模板结合的时候,就复杂了。T&&并不一定表示右值引用,它可能是个左值引用又可能是个右值引用。例如:

template
void f( T&& param){
    
}
f(10);  //10是右值
int x = 10; //
f(x); //x是左值

如果上面的函数模板表示的是右值引用的话,肯定是不能传递左值的,但是事实却是可以。这里的&&是一个未定义的引用类型,称为universal references,它必须被初始化,它是左值引用还是右值引用却决于它的初始化,如果它被一个左值初始化,它就是一个左值引用;如果被一个右值初始化,它就是一个右值引用。

注意:只有当发生自动类型推断时(如函数模板的类型自动推导,或auto关键字),&&才是一个universal references

template
void f( T&& param); //这里T的类型需要推导,所以&&是一个 universal references

template
class Test {
  Test(Test&& rhs); //Test是一个特定的类型,不需要类型推导,所以&&表示右值引用  
};

void f(Test&& param); //右值引用

//复杂一点
template
void f(std::vector&& param); //在调用这个函数之前,这个vector中的推断类型
//已经确定了,所以调用f函数的时候没有类型推断了,所以是 右值引用

template
void f(const T&& param); //右值引用
// universal references仅仅发生在 T&& 下面,任何一点附加条件都会使之失效

所以最终还是要看T被推导成什么类型,如果T被推导成了string,那么T&&就是string&&,是个右值引用,如果T被推导为string&,就会发生类似string& &&的情况,对于这种情况,c++11增加了引用折叠的规则,总结如下:

1.所有的右值引用叠加到右值引用上仍然是一个右值引用。

2.所有的其他引用类型之间的叠加都将变成左值引用。

上面的T& &&其实就被折叠成了个string &,是一个左值引用。

#include 
#include 
#include 
using namespace std;

template
void f(T&& param){
    if (std::is_same::value)
        std::cout << "string" << std::endl;
    else if (std::is_same::value)
        std::cout << "string&" << std::endl;
    else if (std::is_same::value)
        std::cout << "string&&" << std::endl;
    else if (std::is_same::value)
        std::cout << "int" << std::endl;
    else if (std::is_same::value)
        std::cout << "int&" << std::endl;
    else if (std::is_same::value)
        std::cout << "int&&" << std::endl;
    else
        std::cout << "unkown" << std::endl;
}

int main()
{
    int x = 1;
    f(1); // 参数是右值 T推导成了int, 所以是int&& param, 右值引用
    f(x); // 参数是左值 T推导成了int&, 所以是int&&& param, 折叠成 int&,左值引用
    int && a = 2;
    f(a); //虽然a是右值引用,但它还是一个左值, T推导成了int&
    string str = "hello";
    f(str); //参数是左值 T推导成了string&
    f(string("hello")); //参数是右值, T推导成了string,右值引用
    f(std::move(str));//参数是右值, T推导成了string,右值引用
}

所以,归纳一下, 传递左值进去,就是左值引用,传递右值进去,就是右值引用。如它的名字,这种类型确实很"通用",下面要讲的完美转发,就利用了这个特性 

完美转发

所谓转发,就是通过一个函数将参数继续转交给另一个函数进行处理,原参数可能是右值,可能是左值,如果还能继续保持参数的原有特征,那么它就是完美的。

void process(int& i){
    cout << "process(int&):" << i << endl;
}
void process(int&& i){
    cout << "process(int&&):" << i << endl;
}

void myforward(int&& i){
    cout << "myforward(int&&):" << i << endl;
    process(i);
}

int main()
{
    int a = 0;
    process(a); //a被视为左值 process(int&):0
    process(1); //1被视为右值 process(int&&):1
    process(move(a)); //强制将a由左值改为右值 process(int&&):0
    myforward(2);  //右值经过forward函数转交给process函数,却称为了一个左值,
    //原因是该右值有了名字  所以是 process(int&):2
    myforward(move(a));  // 同上,在转发的时候右值变成了左值  process(int&):0
    // forward(a) // 错误用法,右值引用不接受左值
}

上面的例子就是不完美转发,而c++中提供了一个std::forward()模板函数解决这个问题。将上面的myforward()函数简单改写一下:

void myforward(int&& i)
{
    cout << "myforward(int&&):" << i << endl;
    process(std::forward(i));
}

myforward(2); // process(int&&):2

上面修改过后还是不完美转发,myforward()函数能够将右值转发过去,但是并不能够转发左值,解决办法就是借助universal references通用引用类型和std::forward()模板函数共同实现完美转发。例子如下:

#include 
#include 
#include 
using namespace std;

void RunCode(int &&m) {
    cout << "rvalue ref" << endl;
}
void RunCode(int &m) {
    cout << "lvalue ref" << endl;
}
void RunCode(const int &&m) {
    cout << "const rvalue ref" << endl;
}
void RunCode(const int &m) {
    cout << "const lvalue ref" << endl;
}

// 这里利用了universal references,如果写T&,就不支持传入右值,而写T&&,既能支持左值,又能支持右值
template
void perfectForward(T && t) {
    RunCode(forward (t));
}

template
void notPerfectForward(T && t) {
    RunCode(t);
}

int main()
{
    int a = 0;
    int b = 0;
    const int c = 0;
    const int d = 0;

    notPerfectForward(a); // lvalue ref
    notPerfectForward(move(b)); // lvalue ref
    notPerfectForward(c); // const lvalue ref
    notPerfectForward(move(d)); // const lvalue ref

    cout << endl;
    perfectForward(a); // lvalue ref
    perfectForward(move(b)); // rvalue ref
    perfectForward(c); // const lvalue ref
    perfectForward(move(d)); // const rvalue ref
}

 

参考

  • 深入理解C++11:C++11新特性解析与应用
  • 深入应用C++11:代码优化与工程级应用
  • Effective Modern C++

你可能感兴趣的:(c++,右值,移动)