- 多线程-CompletableFuture
侧耳倾听111
java
简介CompletableFuture:异步任务编排工具。java8中引入的一个类,位于juc包下,是Future的增强版。它可以让用户更好地构建和组合异步任务,避免回调地狱。在CompletableFuture中,如果用户没有指定执行异步任务时的线程池,默认使用ForkJoinPool中的公共线程池。使用案例简单使用几个入门案例,学习如何使用CompletableFuture提交异步任务并行接收
- 深入解析 JVM —— 从基础概念到实战调优的全链路学习指南
总是学不会.
JVMjvmjava开发后端
文章目录一、为什么要学习JVM?1.面试必备与技能提升2.性能优化与问题诊断3.编写高质量代码二、JVM基础概念与体系结构1.JVM简介2.JDK、JRE与JVM三、JVM内存模型1.线程私有区2.线程共享区四、类加载机制与双亲委派1.类加载过程2.双亲委派模型3.动态加载与反射五、垃圾回收机制与调优策略1.分代收集思想2.常见垃圾回收算法3.主流垃圾收集器4.JVM调优六、JIT编译与代码优化1
- 2024华为OD机试真题-优秀学员统计(C++)-E卷A卷-100分
2024剑指offer
华为OD机试(C++)2025华为odc++
2024华为OD机试最新E卷题库-(C卷+D卷+E卷)-(JAVA、Python、C++)目录题目描述输入描述输出描述用例1用例2用例3考点题目解析代码C++题目描述公司某部门软件教导团正在组织新员工每日打卡学习活动,他们开展这项学习活动已经一个月了,所以想统计下这个月优秀的打卡员工。每个员工会对应一个id,每天的打卡记录记录当天打卡员工的id集合,一共30天。请你实现代码帮助统计出打卡次数top
- 第0节 机器学习与深度学习介绍
汉堡go
李哥深度学习专栏人工智能机器学习神经网络
人工智能:能够感知、推理、行动和适应的程序机器学习:能够随着数据量的增加而不断改进性能的算法(数学上的可解释性但准确率不是百分百,灵活度不高)深度学习:机器学习的一个子集:利用多层神经网络从大量数据中进行学习(设计一个很深的网络架构让机器自己学)(深度学习就是找一个函数f)机器学习算法简介(狭义)一般是基于数学,或者统计学的方法,具有很强的可解释性经典传统机器学习算法:KNN、决策树、朴素贝叶斯一
- 【GMT-学习4】比例尺背景透明度设置
科熊小猪
GMT学习
比例尺背景透明度设置通过修改-F+gwhite参数为-F+gwhite@50,可以将地图的白色填充设置为50%的透明度。可以根据需要调整透明度值(例如@30表示30%透明度,@80表示80%透明度)。
- awesome python 中文版 相见恨晚!(pythonNB的第三方资源库)
weixin_30788731
AwesomePython中文版来啦!原文链接:Python资源大全内容包括:Web框架、网络爬虫、网络内容提取、模板引擎、数据库、数据可视化、图片处理、文本处理、自然语言处理、机器学习、日志、代码分析等。GitHub-jobbole/awesome-python-cn:Python资源大全中文版环境管理管理Python版本和环境的工具p–非常简单的交互式python版本管理工具。pyenv–简单
- 【机器学习】决策树 ( Decision Tree )
AI天才研究院
ChatGPTDeepSeekR1&大数据AI人工智能大模型深度学习实战机器学习决策树算法支持向量机人工智能
【机器学习】决策树(DecisionTree)文章目录【机器学习】决策树(DecisionTree)1.ID3(1)信息增益(2)ID3的算法流程(3)实现ID32.C4.53.CART(1)决策桩DecisionStump(2)回归CART:最小二乘回归树leastsquaresregressiontree⚪回归CART的例子(3)分类CART(4)处理缺失值Handlemissingfeatu
- 超实用计算机网络面试题,快来学习一下
优人ovo
计算机网络学习
引言计算机网络作为程序员的内功,不仅要做到深入理解,面试题也要详细掌握,跟着作者的节奏好好复盘一下吧1.OSI模型和TCP/IP模型的区别是什么?各层的主要功能是什么?考察点:网络分层架构、协议栈理解答案方向:OSI分为7层(物理层→数据链路层→网络层→传输层→会话层→表示层→应用层),TCP/IP简化为4层(网络接口层→网络层→传输层→应用层)。关键区别:OSI是理论模型,TCP/IP是实际工业
- 机器学习-随机森林解析
Mr终游
机器学习机器学习随机森林人工智能
目录一、.随机森林的思想二、随机森林构建步骤1.自助采样2.特征随机选择3构建决策树4.集成预测三.随机森林的关键优势**(1)减少过拟合****(2)高效并行化****(3)特征重要性评估****(4)耐抗噪声**四.随机森林的优缺点优点缺点五.参数调优(以scikit-learn为例)波士顿房价预测一、.随机森林的思想1.通过组成多个弱学习器(决策树)形成一个学习器2.多样性增强:每颗决策树通
- 基于YOLOv5深度学习的田间杂草检测系统:UI界面 + YOLOv5 + 数据集详细教程
深度学习&目标检测实战项目
YOLO深度学习uiYOLOv5人工智能计算机视觉
引言随着农业科技的进步,智能化农业越来越受到重视,尤其是通过计算机视觉技术对作物进行监测和管理。在农业生产中,杂草的生长对作物的生长产生了负面影响,因此准确地检测和识别田间杂草至关重要。本文将详细介绍如何构建一个基于深度学习的田间杂草检测系统,使用YOLOv5模型进行目标检测,并提供一个用户友好的界面。我们将分步骤进行,包括环境配置、数据集准备、模型训练、实时杂草检测系统的实现等内容。目录引言目录
- 象牙塔中的“智者”:DeepSeek R1 引领高校问答智体新纪元
海棠AI实验室
“智教之光“-探索AI教育新范式人工智能RAGDeepSeek
目录高校问答智体的“前世今生”:痛点与机遇DeepSeekR1:开启推理大模型的新篇章“DeepSeekR1+高校”:场景、架构与实践3.1场景一:智能学术助手3.2场景二:个性化学习导航3.3场景三:科研数据分析3.4系统架构设计3.5实践案例分享技术进阶:让问答智体更“聪明”4.1知识图谱融合4.2持续学习与反馈4.3多模态融合挑战与展望:迈向更广阔的未来1.高校问答智体的“前世今生”:痛点与
- 人工智能与深度学习的应用案例解析及代码实现
accurater
人工智能深度学习科技机器人
引言人工智能(AI)与深度学习(DeepLearning)作为21世纪最具变革性的技术之一,已渗透到医疗、金融、交通、制造等各个领域。深度学习通过多层神经网络模拟人类认知过程,显著提升了复杂任务的自动化水平。本文将从技术原理、核心应用案例及代码实现三个维度,系统解析其实际应用,并探讨未来挑战与发展方向。一、深度学习技术概述1.1核心技术框架深度学习基于深度神经网络(DNN),其核心在于通过多层非线
- 零基础入门Jetson Nano——踩坑系统烧入,软件安装部署
Agmage
人工智能边缘计算视觉检测计算机视觉嵌入式硬件算法
一、简介本文章主要讲述作为小白的我,在零基础入手国产JetsonNano套件,踩坑系统烧入,环境部署,下面是我在最初学习路上遇到的问题,做一个总结,以便来帮助更多的nano小白少走弯路。二、问题汇总及解决方法问题点描述解决问题点时长/H解决问题点方法解决过程说明电源无匹配上对应设备要求1H选用设备所需电源5V,4A刚开始选用不匹配电源线,导致设备无法启动,误以为是设备坏了,拿了万用表测量。在使用到
- 深度学习笔记——基础部分
肆——
深度学习深度学习笔记人工智能pythonpytorch
深度学习是一种机器学习的方式,通过模仿人脑吃力信息的方式,使用多层神经网络来学习数据的复杂模式和特征。深度学习和机器学习的区别:在机器学习中,特征提取通常需要人工设计和选择,依赖于领域专家的知识来确定哪些特征对模型最为重要;而在深度学习中,特征提取是自动进行的,通过多层神经网络结构直接从原始数据(也可能需要初步处理)中学习复杂特征,减少了对人工干预的依赖,使得模型能够处理更加复杂的数据和任务。计算
- Linux 详细了解
ytdbc
linux
1.Linux命令行a.Linux命令行是Linux系统的一个核心组件,允许用户通过键盘输入命令来管理和操作系统,必须学习和掌握常用的Linux命令,才可以高效地使用Linux系统。b.打开终端:在大多数Linux发行版中,你可以通过应用程序菜单或快捷键(如Ctrl+Alt+T)来打开终端。c.输入命令:在命令提示符后面输入你想要的命令,然后按Enter键执行。使用Tab键自动补全:输
- 机器学习基础(4)
yyc_audio
深度学习python机器学习神经网络人工智能
超越基于常识的基准除了不同的评估方法,还应该利用基于常识的基准。训练深度学习模型就好比在平行世界里按下发射火箭的按钮,你听不到也看不到。你无法观察流形学习过程,它发生在数千维空间中,即使投影到三维空间中,你也无法解释它。唯一的反馈信号就是验证指标,就像隐形火箭的高度计。特别重要的是,我们需要知道火箭是否离开了地面。发射地点的海拔高度是多少?模型似乎有15%的精度——这算是很好吗?在开始处理一个数据
- vlookup反向查询_XLOOKUP函数与VLOOKUP函数用法比较
weixin_39968820
vlookup反向查询
1、XLOOKUP基础语法在学习任何一个函数之前,需要了解这个函数的基础语法,从微软官方的帮助文档里找到了这个函数的参数语法,共计有5个参数,跟LOOKUP的参数非常接近,但是使用起来会更加简单了一些。其中第1~3个参数跟LOOKUP的参数非常接近,都是将「查找区域」和「结果区域」全部独立出来了,跟VLOOKUP的「选择区域」就有所差异,拆分出来会让函数更加灵活。第4个参数match_mode表示
- 深入理解 Java 中的 Lambda 表达式与函数式编程
庞胖
javaspringbootjdk
引言Java8引入的StreamAPI是处理集合数据的强大工具,结合Lambda表达式,可以极大地简化集合操作。本文将全面介绍StreamAPI的常用操作,涵盖实体类Map互转、生成新List、取内层嵌套的Map组成List、循环、过滤、根据多个属性过滤、分组、去重、根据条件筛选数据等常见场景。通过学习本文,你将掌握StreamAPI的95%常用操作,提升代码的简洁性和效率。1.实体类Map互转场
- CentOS 7中安装Dify
laolitou_1024
CentOSDockerAIcentos运维人工智能
Dify是一个开源的LLM应用开发平台。其直观的界面结合了AI工作流、RAG管道、Agent、模型管理、可观测性功能等,让您可以快速从原型到生产。尤其是我们本地部署DeepSeek等大模型时,会需要用到Dify来帮我们快捷的开发和应用。大家可以参考学习它的中文文档:https://github.com/langgenius/dify/blob/main/README_CN.md一、系统要求在安装D
- uniapp学习笔记之知识点大总结
Qiuxuntao
uniappuni-app学习前端
文章目录一、uniapp介绍二、环境搭建2.1、利用HbuilderX初始化项目2.2、运行项目2.3、介绍项目目录和文件作用三、网络1、发起请求2、上传3、下载4、SocketTask1、SocketTask.onMessage(callback)2、SocketTask.send(object)3、SocketTask.close(object)4、SocketTask.onOpen(call
- 【前端知识】Web Components开发框架quarkC介绍
问道飞鱼
前端开发技术前端javascript开发语言webcomponents
文章目录概述**QuarkC简介****核心特性****QuarkC的使用方法****1.安装QuarkC****2.创建一个简单的QuarkC组件****3.使用组件****QuarkC的优势****1.更低的学习成本****2.更好的开发体验****3.跨框架兼容性****4.性能优化****5.社区支持与生态****6.开放性和灵活性****QuarkC的适用场景****总结**构建复杂We
- 机器学习|决策树|Gini指数和熵的区别|简单示例
漂亮_大男孩
机器学习决策树人工智能
如是我闻:在决策树模型中,Gini指数和熵(Entropy)是用来计算节点纯度的两种方法。它们都是评估分裂点的好坏,以选择最佳的属性来分裂。让我们先来了解一下这两种方法的定义,然后通过一个简单的例子来讨论它们之间的区别。Gini指数Gini指数是一个衡量数据分布不均匀程度的指标。在决策树中,它用于评估数据集的不纯度。Gini指数越低,数据的纯度越高。其计算公式为:Gini=1−∑i=1npi2Gi
- 00计算机视觉学习内容
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉(ComputerVision)开发需要掌握数学基础、编程语言、图像处理、机器学习、深度学习等多个方面的知识。以下是一个系统的学习路线:1️⃣数学基础(核心理论支撑)计算机视觉涉及很多数学概念,以下是必备数学知识:✅线性代数(矩阵运算是计算机视觉的核心)向量、矩阵运算(加减、乘法、转置)特征值与特征向量SVD(奇异值分解),用于图像压缩、降维齐次坐标变换(用于3D计算机视觉)✅概率统计(
- 迁移也有温度,隆重推荐:温迁移
作为后端持续改进计划的一部分,Akamai开发了一种更快速调整云平台中虚拟机规模的方法,不仅如此,这种方法还可以在将虚拟机迁移到不同主机时显著降低日常维护期间的停机时间。在服务器的整个生命周期中,用户可能需要调整虚拟机规模,更改计划类型,甚至迁移到另一个Akamai数据中心。Akamai也可能需要定期迁移虚拟机,以帮助主机实现重新平衡或进行例行维护。以前,Akamai云计算平台上有两种类型的迁移:
- Z-library数字图书馆镜像地址/官网入口及客户端app(持续更新)
读书读书笔记
Z-Library(简称z-lib,前身为BookFinder)是一个影子图书馆和开放获取文件分享计划,用户可在此网络下载期刊文章以及各种类型的书籍。截止2022年6月12日,该网站共收录了10,456,034本书和84,837,646篇文章。zlibrary电脑客户端/安卓appzlibrary(windows/mac/安卓app)客户端下载:https://pan.quark.cn/s/323
- Manus学习手册合集【建议收藏】
周师姐
学习pdf人工智能
这两天,一款通用AI智能体Manus还没发布就火了,因为还在内测中,用户需要邀请码才能够体验,这就导致原本免费的邀请码在二手平台最高被炒到8万8。相比于之前爆火的DeepSeek和ChatGPT这类AI对话工具,Manus是全球首款真正意义上的通用人工智能!没错,就是科幻电影里面能够独立思考,自主运行的人工智能!!manus学习资料:https://pan.xunlei.com/s/VOKk8Cq
- 2025年AI编程的进展与突破
调皮的芋头
低代码神经网络人工智能AIGCAI编程
2025年AI编程的进展与突破1.AI编程能力达到中级工程师水平核心技术突破:大语言模型(如GPT-4、Claude3.5)通过海量代码训练,已能理解自然语言需求并生成符合规范的代码,支持复杂任务(如多文件修改、测试生成、代码部署)。能力边界扩展:AI可独立完成模块化开发、代码调试及简单架构设计,例如Meta计划在2025年将中级工程师的工作自动化,部分企业代码生成率已超50%(如科大讯飞)。多模
- iOS安全和逆向系列教程 第16篇:Frida入门与高级应用
自学不成才
iOS安全和逆向系列教程cocoamacosobjective-c
iOS逆向工程专栏第16篇:Frida入门与高级应用前言欢迎来到iOS逆向工程专栏的第16篇文章!在上一篇中,我们探讨了Cycript这一强大的逆向分析工具。今天,我们将深入学习功能更为强大、更为灵活的动态插桩工具——Frida。Frida作为现代iOS逆向工程中最受欢迎的工具之一,其强大的跨平台能力和灵活的JavaScript引擎使得我们能够轻松地分析和修改iOS应用的运行时行为。无论是逆向分析
- iOS安全和逆向系列教程 第17篇:探讨ARM64架构与Swift逆向分析技术
自学不成才
iOS安全和逆向系列教程ios安全架构
iOS安全和逆向系列教程第17篇:探讨ARM64架构与Swift逆向分析技术前言欢迎来到iOS安全和逆向系列教程的第17篇。在前面的文章中,我们已经学习了iOS逆向工程的基础知识,以及各种分析工具的使用方法。今天,我们将深入探讨ARM64架构以及Swift语言的逆向分析技术,这两者对于现代iOS应用的逆向工程至关重要。随着Apple全面迁移到ARM64架构和Swift语言的广泛应用,掌握这些技术已
- 学习prompt
artificiali
prompt
1解释概念中文指令:请借助费曼学习法,以简单的语言解释[特定概念]是什么,并提供一个例子来说明它如何应用。Prompt:PleaseusetheFeynmanLearningTechniquetoexplain[specificconcept]insimplelanguage,andprovideanexampletoillustratehowitapplies.2帕累托法则帮你找到最重要、最具挑
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key