【CrowdHuman】《CrowdHuman:A Benchmark for Detecting Human in a Crowd》

【CrowdHuman】《CrowdHuman:A Benchmark for Detecting Human in a Crowd》_第1张图片
arXiv-2018


文章目录

  • 1 Background and Motivation
  • 2 Related Work
  • 3 Advantages / Contributions
  • 4 CrowdHuman Dataset
    • 4.1 Data Collection
    • 4.2 Image Annotation
    • 4.3 Dataset Statistics
  • 5 Experiments
    • 5.1 Datasets and Metrics
    • 5.2 Detection results on CrowdHuman
    • 5.3 Cross-dataset Evaluation
  • 6 Conclusion(own)


1 Background and Motivation

现有人体检测公开数据集样本不够密集,遮挡也不够
【CrowdHuman】《CrowdHuman:A Benchmark for Detecting Human in a Crowd》_第2张图片

Our goal is to push the boundary of human detection by specifically targeting the challenging crowd scenarios.

于是作者开源了一个密集场景的人体检测数据集

2 Related Work

  • Human detection datasets
    exhaustively annotating crowd regions is incredibly difficult and time consuming.
  • Human detection frameworks

3 Advantages / Contributions

开源了一个 larger-scale with much higher crowdness 的行人数据集——CrowdHuman,兼具 full body bounding box, the visible bounding box, and the head bounding box 标签,实验发现是一个强有力的预训练数据集

4 CrowdHuman Dataset

4.1 Data Collection

Google image search engine with ∼ 150 keywords for query.

搜索的关键字涵盖 40 different cities,various activities,numerous viewpoints,比如 Pedestrians on the Fifth Avenue

a keyword is limited to 500 to make the distribution of images balanced.

爬下来 ~2.5W 张,整理

15000, 4370 and 5000 images for training, validation, and testing respectively.

4.2 Image Annotation

先标 full bounding box

把 full bbox 裁剪出来,再标 visible bounding box 和 head bounding box

【CrowdHuman】《CrowdHuman:A Benchmark for Detecting Human in a Crowd》_第3张图片

4.3 Dataset Statistics

Dataset Size / Diversity
【CrowdHuman】《CrowdHuman:A Benchmark for Detecting Human in a Crowd》_第4张图片

Density
【CrowdHuman】《CrowdHuman:A Benchmark for Detecting Human in a Crowd》_第5张图片
Occlusion
【CrowdHuman】《CrowdHuman:A Benchmark for Detecting Human in a Crowd》_第6张图片
visible ratio 越小表示遮挡越严重,极限遮挡的话 CityPersons 还是会比 CrowdHuman 多一些

【CrowdHuman】《CrowdHuman:A Benchmark for Detecting Human in a Crowd》_第7张图片
除了上面的二人遮挡,作者还统计了三人遮挡率

【CrowdHuman】《CrowdHuman:A Benchmark for Detecting Human in a Crowd》_第8张图片

5 Experiments

检测器 FPN and RetinaNet

5.1 Datasets and Metrics

  • Caltech dataset

  • COCOPersons,64115 images from the trainval minus minival for training, and the other 2639 images from minival for validation.

  • CityPersons

  • Brainwash

  • Recall

  • AP

  • mMR,which is the average log miss rate over false positives per-image ranging in [ 1 0 − 2 , 1 0 0 ] [10^{−2}, 10^0] [102,100],越小越好

5.2 Detection results on CrowdHuman

先看看 visible bounding box 的检测结果

【CrowdHuman】《CrowdHuman:A Benchmark for Detecting Human in a Crowd》_第9张图片
看看可见部分的检测示例

【CrowdHuman】《CrowdHuman:A Benchmark for Detecting Human in a Crowd》_第10张图片
再看看 full bounding box 的检测结果

【CrowdHuman】《CrowdHuman:A Benchmark for Detecting Human in a Crowd》_第11张图片
【CrowdHuman】《CrowdHuman:A Benchmark for Detecting Human in a Crowd》_第12张图片
再看看人头检测

【CrowdHuman】《CrowdHuman:A Benchmark for Detecting Human in a Crowd》_第13张图片
【CrowdHuman】《CrowdHuman:A Benchmark for Detecting Human in a Crowd》_第14张图片

5.3 Cross-dataset Evaluation

看看其泛化性能

COCOPersons
【CrowdHuman】《CrowdHuman:A Benchmark for Detecting Human in a Crowd》_第15张图片
可以看到用 CrowdHuman 预训练过后,再在 COCOPersons 上微调效果有提升

Caltech
【CrowdHuman】《CrowdHuman:A Benchmark for Detecting Human in a Crowd》_第16张图片
CityPersons
【CrowdHuman】《CrowdHuman:A Benchmark for Detecting Human in a Crowd》_第17张图片
Brainwash
【CrowdHuman】《CrowdHuman:A Benchmark for Detecting Human in a Crowd》_第18张图片

6 Conclusion(own)

https://github.com/sshao0516/CrowdHuman

你可能感兴趣的:(人工智能,python,深度学习,CrowdHuman,计算机视觉)