TF-IDF计算过程

本文内容主要摘自python  machine  learning  2nd   edition

1、假设我们有以下三个文本

• 'The sun is shining'

•  'The weather is sweet'

•  'The sun is shining, the weather is sweet, and one and one is  two

2、利用CountVectorizer类得到如下字典

{'and': 0,'two': 7,'shining': 3,'one': 2,'sun': 4,'weather': 8,'the': 6,'sweet': 5,'is': 1}

3、将步骤1的文档转换为矩阵

[[0 1 0 1 1 0 1 0 0]

[0 1 0 0 0 1 1 0 1]

[2 3 2 1 1 1 2 1 1]]

4.计算tf-idf值

我们以is为例进行计算,is对应的是矩阵第二列。

tf值,表示term在该文本中出现的次数,这里即is在文本3出现的次数,很容易看出是3.

idf值,sklearn做了小小的改动,公式是 (1+log). 的意思就是文本总数(number of  document),df(d,t)表示包含is 的文件数目,很明显,这里也是3.这样,计算的结果为3*(1+log)=3.

需要注意的是,sklearn对结果进行了正则化处理。


l2 norm

最终得到的结果为

[[ 0.  0.43   0. 0.56 0.56  0.    0.43    0.    0. ]

[ 0.  0.43    0.   0.   0.    0.56 0.43  0.   0.56]

[ 0.5 0.45   0.5 0.19 0.19 0.19 0.3 0.25 0.19]]

每一行的平方和均为1,这是l2正则化处理的结果。

另外可以看出,原先is的词频是 1 1 3,最终tf-idf值是0.43 0.43 0.45 。

你可能感兴趣的:(TF-IDF计算过程)