深度剖析数据在内存中的存储

博客主页:️自信不孤单

文章专栏:C语言

代码仓库:破浪晓梦

欢迎关注:欢迎大家点赞收藏+关注

深度剖析数据在内存中的存储

文章目录

  • 深度剖析数据在内存中的存储
  • 前言
  • 1、数据类型介绍
    • 1.1 类型的基本归类:
  • 2、整型在内存中的存储
    • 2.1 原码、反码、补码
    • 2.2 大小端介绍
  • 3、浮点型在内存中的存储
    • 3.1 一个例子
    • 3.2 浮点数存储规则
    • 3.3 例子解释


前言

重点分析

  1. 数据类型详细介绍
  2. 整型在内存中的存储:原码、反码、补码
  3. 大小端字节序介绍及判断
  4. 浮点型在内存中的存储解析

1、数据类型介绍

基本的内置类型:

char //字符数据类型
short //短整型
int //整型
long //长整型
long long //更长的整型
float //单精度浮点数
double //双精度浮点数
//C语言没有字符串类型

类型的意义:

  1. 使用这个类型开辟内存空间的大小(大小决定了使用范围)。
  2. 如何看待内存空间的视角。

1.1 类型的基本归类:

整型家族:

char
    unsigned char
    signed char
short
    unsigned short [int]
    signed short [int]
int
    unsigned int
    signed int
long
    unsigned long [int]
    signed long [int]

浮点数家族:

float
double

构造类型:

> 数组类型
> 结构体类型 struct
> 枚举类型 enum
> 联合类型 union

指针类型:

int *pi;
char *pc;
float* pf;
void* pv;

空类型:

void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型。

2、整型在内存中的存储

一个变量的创建是要在内存中开辟空间的。空间的大小是根据不同的类型而决定的。

那接下来我们谈谈数据在所开辟内存中到底是如何存储的?

比如:

int a = 20;
int b = -10;

我们知道为 a 分配四个字节的空间。
那如何存储?

下来了解下面的概念:

2.1 原码、反码、补码

计算机中的整数有三种2进制表示方法,即原码、反码和补码。
三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位:
正数的原、反、补码都相同。
负整数的三种表示方法各不相同。

原码
直接将数值按照正负数的形式翻译成二进制就可以得到原码。

反码
将原码的符号位不变,其他位依次按位取反就可以得到反码。

补码
反码+1就得到补码。

对于整型来说:数据存放内存中其实存放的是补码。

为什么呢?
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;
同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

深度剖析数据在内存中的存储_第1张图片

我们看看在内存中的存储:
我们可以看到对于a和b分别存储的是补码。但是我们发现顺序有点不对劲。
这是又为什么?

2.2 大小端介绍

什么大端小端:
大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。

为什么会有大小端模式之分呢?

这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。但是在C语言中除了8bitchar之外,还有16bitshort型,32bitlong型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
例如:一个16bitshortx,在内存中的地址为0x0010x的值为0x1122,那么0x11为高字节,0x22为低字节。对于大端模式,就将0x11放在低地址中,即0x0010中,0x22放在高地址中,即0x0011中。小端模式,刚好相反。我们常用的X86结构是小端模式,而KEIL C51则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

接下来我们进行一个练习

设计一个小程序来判断当前机器的字节序。

#include 
int check_sys()
{
	int i = 1;
	return (*(char*)&i);
}
int main()
{
	int ret = check_sys();
	if (ret == 1)
	{
		printf("小端\n");
	}
	else
	{
		printf("大端\n");
	}
	return 0;
}

3、浮点型在内存中的存储

常见的浮点数:
3.14159
1E10

浮点数家族包括:floatdoublelong double类型。
浮点数表示的范围:float.h中定义

3.1 一个例子

浮点数存储的例子:

int main()
{
	int n = 9;
	float* pFloat = (float*)&n;
	printf("n的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);
	*pFloat = 9.0;
	printf("num的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);
	return 0;
}

输出的结果是什么呢?

深度剖析数据在内存中的存储_第2张图片

3.2 浮点数存储规则

num*pFloat在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。

详细解读:
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:

  • (-1)^S * M * 2^E
  • (-1)^S表示符号位,当S=0V为正数;当S=1V为负数。
  • M表示有效数字,大于等于1,小于2
  • 2^E表示指数位。

举例来说:
十进制的5.0,写成二进制是101.0,相当于1.01×2^2
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2
十进制的-5.0,写成二进制是 -101.0 ,相当于-1.01×2^2。那么S=1,M=1.01,E=2

IEEE 754规定:
对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M

单精度浮点数存储模式

深度剖析数据在内存中的存储_第3张图片

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M

双精度浮点数存储模式

深度剖析数据在内存中的存储_第4张图片

IEEE 754对有效数字M和指数E,还有一些特别规定。
前面说过,1≤M<2,也就是说,M可以写成1.xxxxxx的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂。
首先,E为一个无符号整数(unsigned int)这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10E10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001
然后,指数E从内存中取出还可以再分成三种情况:

E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为

0 01111110 00000000000000000000000

E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

3.3 例子解释

了解完这些,现在我们就可以解释上面的例子了

让我们回到一开始的问题:为什么0x00000009还原成浮点数,就成了0.000000

首先,将0x00000009拆分,得到第一位符号位s=0,后面8位的指数E=00000000, 最后23位的有效数字M=000 0000 0000 0000 0000 1001

由于指数E全为0,所以符合上面讲的第二种情况。因此,浮点数V就写成:V=(-1)^0 × 0.00000000000000000001001×2^(-126)=1.001×2^(-146)。显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000

再看例子的第二部分

请问浮点数9.0,如何用二进制表示?还原成十进制又是多少?
首先,浮点数9.0等于二进制的1001.0,即1.001×2^3

9.0 -> 1001.0 ->(-1)^01.0012^3 -> s=0,M=1.001,E=3+127=130  

那么,第一位的符号位s=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,即10000010
所以,写成二进制形式,应该是s+E+M,即这个32位的二进制数,还原成十进制,正是1091567616

到此,关于《深度剖析数据在内存中的存储》的内容就结束了
感谢大家的观看
如果对您有帮助,请一键三连
您的支持就是对我创作最大的激励!!!

你可能感兴趣的:(C语言,c++,算法,数据结构)