用python爬取链家网成都房价信息(包括总价、均价、地址、描述等)

用python爬取链家网成都房价信息(包括总价、均价、地址、描述等)

文章目录

  • 准备工作
  • 1、网页分析
  • 2、获取HTML信息
  • 3、获取数据
  • 4、保存文件到本地
  • 5、完整代码


准备工作

链家网作为互联网房屋销售信息的大平台之一,拥有大量的二手房源信息,以成都为例,他的房源信息有120000+条以上,如果人工浏览过滤信息,过程比较繁琐,所以可以先使用爬虫技术,将房源信息爬取后在进行数据分析等后期工作。

本次爬虫使用的第三方库有requests,pandas,bs4等(re,time为python自带的库),如果没有,可以使用pip命令安装


1、网页分析

本次爬取的目标网页链接为https://cd.lianjia.com/ershoufang/rs/。 由于数据比较多,一个网页只能存放30条房源信息,在页面底部点击下一页后,出现的网页链接为https://cd.lianjia.com/ershoufang/pg2/,不难看出,‘cd’指的是目标城市的拼音简称,在原链接后接的‘/pg2’就是page2。所以我们将https://cd.lianjia.com/ershoufang作为原链接,通过一个简单的循环来生成后面需要的所有页的链接。
lianjia_url='https://cd.lianjia.com/ershoufang/pg'
    for i in range(1,101):
        #url=lianjia_url+str(i)+'rs%E5%8C%97%E4%BA%AC/'
        url=lianjia_url+str(i)+'rs成都/'

接下来我们需要进入网页观察其存放数据的方式
用python爬取链家网成都房价信息(包括总价、均价、地址、描述等)_第1张图片
以标签信息为例(即标题),存放在名为‘title’的标签下。使用re库就能非常轻松的将title的信息分离出来。

2、获取HTML信息

def get_html(url):
    headers={'User-Agent':'Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36',
            'Cookie':'lianjia_uuid=9d3277d3-58e4-440e-bade-5069cb5203a4; UM_distinctid=16ba37f7160390-05f17711c11c3e-454c0b2b-100200-16ba37f716618b; _smt_uid=5d176c66.5119839a; sensorsdata2015jssdkcross=%7B%22distinct_id%22%3A%2216ba37f7a942a6-0671dfdde0398a-454c0b2b-1049088-16ba37f7a95409%22%2C%22%24device_id%22%3A%2216ba37f7a942a6-0671dfdde0398a-454c0b2b-1049088-16ba37f7a95409%22%2C%22props%22%3A%7B%22%24latest_traffic_source_type%22%3A%22%E7%9B%B4%E6%8E%A5%E6%B5%81%E9%87%8F%22%2C%22%24latest_referrer%22%3A%22%22%2C%22%24latest_referrer_host%22%3A%22%22%2C%22%24latest_search_keyword%22%3A%22%E6%9C%AA%E5%8F%96%E5%88%B0%E5%80%BC_%E7%9B%B4%E6%8E%A5%E6%89%93%E5%BC%80%22%7D%7D; _ga=GA1.2.1772719071.1561816174; Hm_lvt_9152f8221cb6243a53c83b956842be8a=1561822858; _jzqa=1.2532744094467475000.1561816167.1561822858.1561870561.3; CNZZDATA1253477573=987273979-1561811144-%7C1561865554; CNZZDATA1254525948=879163647-1561815364-%7C1561869382; CNZZDATA1255633284=1986996647-1561812900-%7C1561866923; CNZZDATA1255604082=891570058-1561813905-%7C1561866148; _qzja=1.1577983579.1561816168942.1561822857520.1561870561449.1561870561449.1561870847908.0.0.0.7.3; select_city=110000; lianjia_ssid=4e1fa281-1ebf-e1c1-ac56-32b3ec83f7ca; srcid=eyJ0Ijoie1wiZGF0YVwiOlwiMzQ2MDU5ZTQ0OWY4N2RiOTE4NjQ5YmQ0ZGRlMDAyZmFhODZmNjI1ZDQyNWU0OGQ3MjE3Yzk5NzFiYTY4ODM4ZThiZDNhZjliNGU4ODM4M2M3ODZhNDNiNjM1NzMzNjQ4ODY3MWVhMWFmNzFjMDVmMDY4NWMyMTM3MjIxYjBmYzhkYWE1MzIyNzFlOGMyOWFiYmQwZjBjYjcyNmIwOWEwYTNlMTY2MDI1NjkyOTBkNjQ1ZDkwNGM5ZDhkYTIyODU0ZmQzZjhjODhlNGQ1NGRkZTA0ZTBlZDFiNmIxOTE2YmU1NTIxNzhhMGQ3Yzk0ZjQ4NDBlZWI0YjlhYzFiYmJlZjJlNDQ5MDdlNzcxMzAwMmM1ODBlZDJkNmIwZmY0NDAwYmQxNjNjZDlhNmJkNDk3NGMzOTQxNTdkYjZlMjJkYjAxYjIzNjdmYzhiNzMxZDA1MGJlNjBmNzQxMTZjNDIzNFwiLFwia2V5X2lkXCI6XCIxXCIsXCJzaWduXCI6XCIzMGJlNDJiN1wifSIsInIiOiJodHRwczovL2JqLmxpYW5qaWEuY29tL3p1ZmFuZy9yY28zMS8iLCJvcyI6IndlYiIsInYiOiIwLjEifQ=='
            }
    html=requests.get(url,headers=headers)
    return html

同样需要我们的headers信息,谷歌浏览器是可以自己看到自己的headers信息的,'User-Agent’和’Cookie’表示请求头信息,建议根据自己的浏览器修改(当然不改也可以),只是向网站服务器证明是通过浏览器访问而不是爬虫脚本。

3、获取数据

def get_data():
    
    houses_info=[]
    location_info=[]
    address_info=[]
    tag_info=[]
    totalPrice_info=[]
    arr_price_info=[]
    pic_box=[]
    lianjia_url='https://cd.lianjia.com/ershoufang/pg'
    for i in range(1,101):
        #url=lianjia_url+str(i)+'rs%E5%8C%97%E4%BA%AC/'
        url=lianjia_url+str(i)+'rs成都/'
        html=get_html(url)
        if html.status_code==200:
            print('----------------')
            print('第{}页爬取成功'.format(i))
        html=html.text
        bs=BeautifulSoup(html,'html.parser')
        pic_link=bs.find_all(class_='lj-lazy')
        links=re.findall('data-original="(.*?)" src=.*?',str(pic_link))
        for link in links:
            pic_box.append(link)
        house=bs.find_all(class_='info clear')
        for item in house:
            item=str(item)
            infomation=BeautifulSoup(item,'html.parser')
            infos=infomation.find_all(class_='title')
            info=re.findall('target="_blank">(.*?)',str(infos))
            houses_info.append(info)
            location=infomation.find_all(class_='flood')
            nerby=re.findall('target="_blank">(.*?)',str(location))
            location_info.append(nerby)
            address=infomation.find_all(class_='address')
            address=re.findall('"houseIcon">(.*?)
',str(address)) address_info.append(address) tag=infomation.find_all(class_='tag') tag=re.findall('(.*?)',str(tag)) tag_info.append(tag) price_info=infomation.find_all(class_='priceInfo') totalPrice=re.findall('"totalPrice">(.*?)(.*?)
',str(price_info)) totalPrice_info.append(totalPrice) arr_price=re.findall('data-price=.*?">(.*?)
',str(price_info)) arr_price_info.append(arr_price) time.sleep(0.5) return houses_info,location_info,address_info,tag_info,totalPrice_info,arr_price_info,pic_box

先只爬取前100页的信息(大概有30000+条左右),其中有难度的就是正则表达式匹配字符串的过程,我在这里举一个简单的例子:

<div class="info">金牛万达<span>/</span>31<span>/</span>76.6平米<span>/</span>东北<span>/</span>简装</div><div class="tag">

假设我们需要提取出‘金牛万达’这个类似的地址信息,可以用re库的findall函数先找出所有的的标签,之后再使用findall函数,就可以拿到‘金牛万达’的信息。

test_line='
金牛万达/3室1厅/76.6平米/东北/简装
' title=re.findall('class="info">(.*?)',test_line) #print(title)

4、保存文件到本地

整合各个列表的文件到本地csv文件,使用pandas的to_csv函数。

houses_info,location_info,address_info,tag_info,totalPrice_info,arr_price_info,pic_box=get_data()
    data=pd.DataFrame({'信息':houses_info,'位置':location_info,'介绍':address_info,'标签':tag_info,'总价':totalPrice_info,'均价':arr_price_info})
    try:
        data.to_csv('机器学习\爬虫\lianjia_cd.csv',encoding='utf_8_sig')
        print("保存文件成功!")
    except:
        print("保存失败")

然后是爬取图片信息,注意一定设置等待时间,链家网频繁访问是一定会出现验证问题的,如果出现验证问题,可以等待十分钟再继续访问。

 with open('机器学习\爬虫\house\img{:s}.jpg'.format(str(time.time())),'wb') as f:
                f.write(s)
                print('第{}张爬取成功'.format(i))
                i=i+1
                if i%5==0:
                    time.sleep(2)

5、完整代码

import requests
from bs4 import BeautifulSoup
import time
import re
import pandas as pd

def get_html(url):
    headers={'User-Agent':'Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36',
            'Cookie':'lianjia_uuid=9d3277d3-58e4-440e-bade-5069cb5203a4; UM_distinctid=16ba37f7160390-05f17711c11c3e-454c0b2b-100200-16ba37f716618b; _smt_uid=5d176c66.5119839a; sensorsdata2015jssdkcross=%7B%22distinct_id%22%3A%2216ba37f7a942a6-0671dfdde0398a-454c0b2b-1049088-16ba37f7a95409%22%2C%22%24device_id%22%3A%2216ba37f7a942a6-0671dfdde0398a-454c0b2b-1049088-16ba37f7a95409%22%2C%22props%22%3A%7B%22%24latest_traffic_source_type%22%3A%22%E7%9B%B4%E6%8E%A5%E6%B5%81%E9%87%8F%22%2C%22%24latest_referrer%22%3A%22%22%2C%22%24latest_referrer_host%22%3A%22%22%2C%22%24latest_search_keyword%22%3A%22%E6%9C%AA%E5%8F%96%E5%88%B0%E5%80%BC_%E7%9B%B4%E6%8E%A5%E6%89%93%E5%BC%80%22%7D%7D; _ga=GA1.2.1772719071.1561816174; Hm_lvt_9152f8221cb6243a53c83b956842be8a=1561822858; _jzqa=1.2532744094467475000.1561816167.1561822858.1561870561.3; CNZZDATA1253477573=987273979-1561811144-%7C1561865554; CNZZDATA1254525948=879163647-1561815364-%7C1561869382; CNZZDATA1255633284=1986996647-1561812900-%7C1561866923; CNZZDATA1255604082=891570058-1561813905-%7C1561866148; _qzja=1.1577983579.1561816168942.1561822857520.1561870561449.1561870561449.1561870847908.0.0.0.7.3; select_city=110000; lianjia_ssid=4e1fa281-1ebf-e1c1-ac56-32b3ec83f7ca; srcid=eyJ0Ijoie1wiZGF0YVwiOlwiMzQ2MDU5ZTQ0OWY4N2RiOTE4NjQ5YmQ0ZGRlMDAyZmFhODZmNjI1ZDQyNWU0OGQ3MjE3Yzk5NzFiYTY4ODM4ZThiZDNhZjliNGU4ODM4M2M3ODZhNDNiNjM1NzMzNjQ4ODY3MWVhMWFmNzFjMDVmMDY4NWMyMTM3MjIxYjBmYzhkYWE1MzIyNzFlOGMyOWFiYmQwZjBjYjcyNmIwOWEwYTNlMTY2MDI1NjkyOTBkNjQ1ZDkwNGM5ZDhkYTIyODU0ZmQzZjhjODhlNGQ1NGRkZTA0ZTBlZDFiNmIxOTE2YmU1NTIxNzhhMGQ3Yzk0ZjQ4NDBlZWI0YjlhYzFiYmJlZjJlNDQ5MDdlNzcxMzAwMmM1ODBlZDJkNmIwZmY0NDAwYmQxNjNjZDlhNmJkNDk3NGMzOTQxNTdkYjZlMjJkYjAxYjIzNjdmYzhiNzMxZDA1MGJlNjBmNzQxMTZjNDIzNFwiLFwia2V5X2lkXCI6XCIxXCIsXCJzaWduXCI6XCIzMGJlNDJiN1wifSIsInIiOiJodHRwczovL2JqLmxpYW5qaWEuY29tL3p1ZmFuZy9yY28zMS8iLCJvcyI6IndlYiIsInYiOiIwLjEifQ=='
            }
    html=requests.get(url,headers=headers)
    return html

def get_data():
    
    houses_info=[]
    location_info=[]
    address_info=[]
    tag_info=[]
    totalPrice_info=[]
    arr_price_info=[]
    pic_box=[]
    lianjia_url='https://cd.lianjia.com/ershoufang/pg'
    for i in range(1,101):
        #url=lianjia_url+str(i)+'rs%E5%8C%97%E4%BA%AC/'
        url=lianjia_url+str(i)+'rs成都/'
        html=get_html(url)
        if html.status_code==200:
            print('----------------')
            print('第{}页爬取成功'.format(i))
        html=html.text
        bs=BeautifulSoup(html,'html.parser')
        pic_link=bs.find_all(class_='lj-lazy')
        links=re.findall('data-original="(.*?)" src=.*?',str(pic_link))
        for link in links:
            pic_box.append(link)
        house=bs.find_all(class_='info clear')
        for item in house:
            item=str(item)
            infomation=BeautifulSoup(item,'html.parser')
            infos=infomation.find_all(class_='title')
            info=re.findall('target="_blank">(.*?)',str(infos))
            houses_info.append(info)
            location=infomation.find_all(class_='flood')
            nerby=re.findall('target="_blank">(.*?)',str(location))
            location_info.append(nerby)
            address=infomation.find_all(class_='address')
            address=re.findall('"houseIcon">(.*?)
',str(address)) address_info.append(address) tag=infomation.find_all(class_='tag') tag=re.findall('(.*?)',str(tag)) tag_info.append(tag) price_info=infomation.find_all(class_='priceInfo') totalPrice=re.findall('"totalPrice">(.*?)(.*?)
',str(price_info)) totalPrice_info.append(totalPrice) arr_price=re.findall('data-price=.*?">(.*?)
',str(price_info)) arr_price_info.append(arr_price) time.sleep(0.5) return houses_info,location_info,address_info,tag_info,totalPrice_info,arr_price_info,pic_box def main(): houses_info,location_info,address_info,tag_info,totalPrice_info,arr_price_info,pic_box=get_data() data=pd.DataFrame({'信息':houses_info,'位置':location_info,'介绍':address_info,'标签':tag_info,'总价':totalPrice_info,'均价':arr_price_info}) try: data.to_csv('机器学习\爬虫\lianjia_cd.csv',encoding='utf_8_sig') print("保存文件成功!") except: print("保存失败") try: headers={'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.87 Safari/537.36'} i=1 for j in range(len(pic_box)): print(pic_box[j]) s=requests.get(pic_box[j],headers=headers).content with open('机器学习\爬虫\house\img{:s}.jpg'.format(str(time.time())),'wb') as f: f.write(s) print('第{}张爬取成功'.format(i)) i=i+1 if i%5==0: time.sleep(2) print("爬取成功") print(len(houses_info)) except: print('爬取失败') pass if __name__ == "__main__": main()

感谢大家的支持,如有错误,请大家多多指正!

你可能感兴趣的:(python,数据分析,数据挖掘,爬虫)