PyTorch 入门学习(七)————torchvision.transforms

文章目录

    • 管理各个transform,使用Compose
    • 一、裁剪 ------ Crop
      • 1、随机裁剪:transforms.RandomCrop
      • 2.中心裁剪:transforms.CenterCrop
      • 3.随机长宽比裁剪 transforms.RandomResizedCrop
      • 4.上下左右中心裁剪:transforms.FiveCrop
      • 5.上下左右中心裁剪后翻转: transforms.TenCrop
    • 二、翻转和旋转——Flip and Rotation
      • 6.依概率p水平翻转transforms.RandomHorizontalFlip
      • 7.依概率p垂直翻转transforms.RandomVerticalFlip
      • 8.随机旋转:transforms.RandomRotation
    • 三、图像变换
      • 9.resize:transforms.Resize
      • 10.标准化:transforms.Normalize
      • 11.转为tensor:transforms.ToTensor
      • 12.填充:transforms.Pad
      • 13.修改亮度、对比度和饱和度:transforms.ColorJitter
      • 14.转灰度图:transforms.Grayscale
      • 15.线性变换:transforms.LinearTransformation()
      • 16.仿射变换:transforms.RandomAffine
      • 17.依概率p转为灰度图:transforms.RandomGrayscale
      • 18.将数据转换为PILImage:transforms.ToPILImage
      • 19.transforms.Lambda
    • 四、对transforms操作,使数据增强更灵活
      • 20.transforms.RandomChoice(transforms)
      • 21.transforms.RandomApply(transforms, p=0.5)
      • 22.transforms.RandomOrder

官方文档地址: https://pytorch.org/docs/stable/torchvision/transforms.html
transform 总共有22个使用方法,可以同时使用多个,使用 transforms.Compose 来实现

管理各个transform,使用Compose

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])

一、裁剪 ------ Crop

1、随机裁剪:transforms.RandomCrop

class torchvision.transforms.RandomCrop(size, padding=None, pad_if_needed=False, fill=0, padding_mode=‘constant’)
  • 功能:依据给定的size随机裁剪
  • size- (sequence or int),若为sequence,则为(h,w);若为int,则(size,size)
  • padding-(sequence or int, optional),此参数是设置填充多少个pixel。
    当为sequence时,若有2个数,则第一个数表示左右扩充多少,第二个数表示上下的。当有4个数时,则为左,上,右,下。
    当为int时,图像上下左右均填充int个,例如padding=4,则上下左右均填充4个pixel,若为3232,则会变成4040。
  • fill- (int or tuple) 填充的值是什么(仅当填充模式为constant时有用)。int时,各通道均填充该值,当长度为3的tuple时,表示RGB通道需要填充的值。
  • padding_mode- 填充模式,这里提供了4种填充模式,1.constant,常量。2.edge 按照图片边缘的像素值来填充。3.reflect,暂不了解。 4. symmetric,暂不了解。

2.中心裁剪:transforms.CenterCrop

class torchvision.transforms.CenterCrop(size)
  • 功能:依据给定的size从中心裁剪
  • 参数:
  • size- (sequence or int),若为sequence,则为(h,w),若为int,则(size,size)

3.随机长宽比裁剪 transforms.RandomResizedCrop

class torchvision.transforms.RandomResizedCrop(size, scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333), interpolation=2)
  • 功能:随机大小,随机长宽比裁剪原始图片,最后将图片resize到设定好的size
  • size- 输出的分辨率
  • scale- 随机crop的大小区间,如scale=(0.08, 1.0),表示随机crop出来的图片会在的0.08倍至1倍之间。
  • ratio- 随机长宽比设置
  • interpolation- 插值的方法,默认为双线性插值(PIL.Image.BILINEAR)

4.上下左右中心裁剪:transforms.FiveCrop

class torchvision.transforms.FiveCrop(size)
  • 功能:对图片进行上下左右以及中心裁剪,获得5张图片,返回一个4D-tensor
  • 参数
  • size- (sequence or int),若为sequence,则为(h,w),若为int,则(size,size)

5.上下左右中心裁剪后翻转: transforms.TenCrop

class torchvision.transforms.TenCrop(size, vertical_flip=False)
  • 功能:对图片进行上下左右以及中心裁剪,然后全部翻转(水平或者垂直),获得10张图片,返回一个4D-tensor。
  • 参数:
  • size- (sequence or int),若为sequence,则为(h,w),若为int,则(size,size)
  • vertical_flip (bool) - 是否垂直翻转,默认为flase,即默认为水平翻转

二、翻转和旋转——Flip and Rotation

6.依概率p水平翻转transforms.RandomHorizontalFlip

class torchvision.transforms.RandomHorizontalFlip(p=0.5)
  • 功能:依据概率p对PIL图片进行水平翻转
  • 参数
  • p- 概率,默认值为0.5

7.依概率p垂直翻转transforms.RandomVerticalFlip

class torchvision.transforms.RandomVerticalFlip(p=0.5)
  • 功能:依据概率p对PIL图片进行垂直翻转
  • 参数:
  • p- 概率,默认值为0.5

8.随机旋转:transforms.RandomRotation

class torchvision.transforms.RandomRotation(degrees, resample=False, expand=False, center=None)
  • 功能:依degrees随机旋转一定角度
  • 参数:
  • degress- (sequence or float or int) ,若为单个数,如 30,则表示在(-30,+30)之间随机旋转
    若为sequence,如(30,60),则表示在30-60度之间随机旋转
  • resample- 重采样方法选择,可选 PIL.Image.NEAREST, PIL.Image.BILINEAR,
    PIL.Image.BICUBIC,默认为最近邻
  • expand- ?
  • center- 可选为中心旋转还是左上角旋转

三、图像变换

9.resize:transforms.Resize

class torchvision.transforms.Resize(size, interpolation=2)
  • 功能:重置图像分辨率
  • 参数
  • size- If size is an int, if height > width, then image will be
    rescaled to (size * height / width, size),所以建议size设定为h*w
  • interpolation- 插值方法选择,默认为PIL.Image.BILINEAR

10.标准化:transforms.Normalize

class torchvision.transforms.Normalize(mean, std)
  • 功能:对数据按通道进行标准化,即先减均值,再除以标准差,注意是 hwc

11.转为tensor:transforms.ToTensor

class torchvision.transforms.ToTensor
  • 功能:将PIL Image或者 ndarray 转换为tensor,并且归一化至[0-1]
  • 注意事项:归一化至[0-1]是直接除以255,若自己的ndarray数据尺度有变化,则需要自行修改。

12.填充:transforms.Pad

class torchvision.transforms.Pad(padding, fill=0, padding_mode=‘constant’)
  • 功能:对图像进行填充
  • 参数
  • padding-(sequence or int, optional),此参数是设置填充多少个pixel。
    当为int时,图像上下左右均填充int个,例如padding=4,则上下左右均填充4个pixel,若为3232,则会变成4040。
    当为sequence时,若有2个数,则第一个数表示左右扩充多少,第二个数表示上下的。当有4个数时,则为左,上,右,下。
  • fill- (int or tuple)
    填充的值是什么(仅当填充模式为constant时有用)。int时,各通道均填充该值,当长度为3的tuple时,表示RGB通道需要填充的值。
  • padding_mode- 填充模式,这里提供了4种填充模式,1.constant,常量。2.edge
    按照图片边缘的像素值来填充。3.reflect,? 4. symmetric,?

13.修改亮度、对比度和饱和度:transforms.ColorJitter

class torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0)
  • 功能:修改修改亮度、对比度和饱和度

14.转灰度图:transforms.Grayscale

class torchvision.transforms.Grayscale(num_output_channels=1)
  • 功能:将图片转换为灰度图
  • 参数
  • num_output_channels- (int) ,当为1时,正常的灰度图,当为3时, 3 channel with r == g == b

15.线性变换:transforms.LinearTransformation()

class torchvision.transforms.LinearTransformation(transformation_matrix)
  • 功能:对矩阵做线性变化,可用于白化处理! whitening: zero-center the data, compute the
    data covariance matrix
  • 参数
  • transformation_matrix (Tensor) – tensor [D x D], D = C x H x W

16.仿射变换:transforms.RandomAffine

class torchvision.transforms.RandomAffine(degrees, translate=None, scale=None, shear=None, resample=False, fillcolor=0)
  • 功能:仿射变换

17.依概率p转为灰度图:transforms.RandomGrayscale

class torchvision.transforms.RandomGrayscale(p=0.1)
  • 功能:依概率p将图片转换为灰度图,若通道数为3,则3 channel with r == g == b

18.将数据转换为PILImage:transforms.ToPILImage

class torchvision.transforms.ToPILImage(mode=None)
  • 功能:将tensor 或者 ndarray的数据转换为 PIL Image 类型数据
  • 参数
  • mode- 为None时,为1通道, mode=3通道默认转换为RGB,4通道默认转换为RGBA

19.transforms.Lambda

Apply a user-defined lambda as a transform.
暂不了解,待补充。

四、对transforms操作,使数据增强更灵活

PyTorch不仅可设置对图片的操作,还可以对这些操作进行随机选择、组合

20.transforms.RandomChoice(transforms)

  • 功能:从给定的一系列transforms中选一个进行操作,randomly picked from a list

21.transforms.RandomApply(transforms, p=0.5)

  • 功能:给一个transform加上概率,以一定的概率执行该操作

22.transforms.RandomOrder

  • 功能:将transforms中的操作顺序随机打乱

你可能感兴趣的:(Pytorch,pytorch,transforms)