暴力匹配不推荐
小结:需要使用到单链表数据结构
小结:完成约瑟夫问题,需要使用到单向环形链表 这个数据结构
数据结构包括:线性结构和非线性结构
顺序存储结构地址是连续的
小结:需要掌握顺序存储结构和链式存储结构的区别
非线性结构包括:二维数组,多维数组,广义表,树结构,图结构
package com.nanjing.sparsearray;
/**
* 稀疏数组
*
* @author xizheng
* @date 2023-01-28 09:59:13
*/
public class SparseArray {
public static void main(String[] args) {
// 创建一个原始的二维数组 11 * 11
// 0: 表示没有棋子, 1 表示黑子 2 表示蓝子
int chessArr1[][] = new int[11][11];
chessArr1[1][2] = 1;
chessArr1[2][3] = 2;
// 输出原始的二维数组
System.out.println("原始的二维数组~~");
for (int[] row : chessArr1) {
for (int data : row) {
System.out.printf("%d\t", data);
}
System.out.println();
}
// 将二维数组 转 稀疏数组的思路
// 1. 先遍历二维数组 得到非0数据的个数
int sum = 0;
for (int i = 0; i < 11; i++) {
for (int j = 0; j < 11; j++) {
if(chessArr1[i][j] != 0) {
sum++;
}
}
}
System.out.println("sum=" + sum);
//2.创建对应的稀疏数组
int sparseArr[][] = new int[sum+1][3];
// 给稀疏数组赋值
sparseArr[0][0] = 11;
sparseArr[0][1] = 11;
sparseArr[0][2] = sum;
// 遍历二维数组,将非0的值存放到 sparseArr中
int count = 0; //count 用于记录是第几个非0数据
for (int i = 0; i < 11; i++) {
for (int j = 0; j < 11; j++) {
if(chessArr1[i][j] != 0) {
count++;
sparseArr[count][0] = i;
sparseArr[count][1] = j;
sparseArr[count][2] = chessArr1[i][j];
}
}
}
// 输出稀疏数组的形式
System.out.println();
System.out.println("得到稀疏数组为~~~~");
for (int i = 0; i < sparseArr.length; i++) {
System.out.printf("%d\t%d\t%d\t\n", sparseArr[i][0], sparseArr[i][1], sparseArr[i][2]);
}
System.out.println();
//将稀疏数组 -->> 恢复成 原始的二维数组
/**
* 1.先读取稀疏数组的第一行,根据第一行的数据,创建原始的二维数组,比如上面的 chessArr2 = int[11][11]
* 2.在读取稀疏数组后几行的数据,并赋给 原始的二维数组即可
*/
//1.先读取稀疏数组的第一行,根据第一行的数据,创建原始的二维数组
int chessArr2[][] = new int[sparseArr[0][0]][sparseArr[0][1]];
//2.在读取稀疏数组后几行的数据(从第二行开始),并赋给 原始的二维数组 即可
for (int i = 1; i < sparseArr.length; i++) {
chessArr2[sparseArr[i][0]][sparseArr[i][1]] = sparseArr[i][2];
}
// 输出恢复后的二维数组
System.out.println();
System.out.println("恢复后的二维数组");
for (int[] row : chessArr2) {
for (int data : row) {
System.out.printf("%d\t", data);
}
System.out.println();
}
}
}
package com.nanjing.queue;
import java.util.Scanner;
/**
* 数组队列演示
*
* @author xizheng
* @date 2023-01-28 11:16:19
*/
public class ArrayQueueDemo {
public static void main(String[] args) {
//测试一把
//创建一个队列
ArrayQueue queue = new ArrayQueue(3);
char key = ' '; //接收用户输入
Scanner scanner = new Scanner(System.in);//
boolean loop = true;
//输出一个菜单
while (loop) {
System.out.println("s(show): 显示队列");
System.out.println("e(exit): 退出程序");
System.out.println("a(add): 添加数据到队列");
System.out.println("g(get): 从队列取出数据");
System.out.println("h(head): 查看队列头的数据");
key = scanner.next().charAt(0);//接收一个字符
switch (key) {
case 's':
queue.showQueue();
break;
case 'a':
System.out.println("输出一个数");
int value = scanner.nextInt();
queue.addQueue(value);
break;
case 'g'://取出数据
try {
int res = queue.getQueue();
System.out.printf("取出的数据是%d\n", res);
} catch (Exception e) {
// TODO: handle exception
System.out.println(e.getMessage());
}
break;
case 'h'://查看队列头的数据
try {
int res = queue.headQueue();
System.out.printf("队列头的数据是%d\n", res);
} catch (Exception e) {
// TODO: handle exception
System.out.println(e.getMessage());
}
break;
case 'e'://退出
scanner.close();
loop = false;
break;
default:
break;
}
}
System.out.println("程序退出~~");
}
}
//使用数组模拟队列-编写一个ArrayQueue类
class ArrayQueue {
private int maxSize; //表示数组的最大容量
private int front; //队列头
private int rear; //队列尾
private int[] arr; //该数据用于存放数据,模拟队列
public ArrayQueue(int arrMaxSize) {
maxSize = arrMaxSize;
arr = new int[maxSize];
front = -1; //指向队列头部,分析出front是指向队列头的前一个位置.
rear = -1; //指向队列尾,指向队列尾的数据(即就是队列最后一个数据)
}
//判断队列是否满
public boolean isFull() {
return rear == maxSize - 1;
}
//判断队列是否为空
public boolean isEmpty() {
return rear == front;
}
//添加数据到队列
public void addQueue(int n) {
//判断队列是否满
if(isFull()) {
System.out.println("队列满,不能加入数据~");
return;
}
rear++; //让rear后移
arr[rear] = n;
}
//获取队列的数据,出队列
public int getQueue() {
//判断队列是否空
if(isEmpty()) {
//通过抛出异常
throw new RuntimeException("队列空,不能取数据");
}
front++; //front后移
return arr[front];
}
//显示队列的所有数据
public void showQueue() {
//遍历
if(isEmpty()) {
System.out.println("队列空的,没有数据~~");
return;
}
for (int i = 0; i < arr.length; i++) {
System.out.printf("arr[%d]=%d\n", i, arr[i]);
}
}
//显示队列的头数据,注意不是取出数据
public int headQueue() {
//判断
if(isEmpty()) {
throw new RuntimeException("队列空的,没有数据~~");
}
return arr[front + 1];
}
}
问题分析并优化
目前数组使用一次就不能用了,没有达到复用的效果
将这个数组使用算法,改进成一个环形的队列 取模:%
package nanjing.queue;
import java.util.Scanner;
/**
* 循环数组队列演示
*
* @author xizheng
* @date 2023-01-28 13:51:03
*/
public class CircleArrayQueueDemo {
public static void main(String[] args) {
//测试一把
System.out.println("测试数组模拟环形队列的案例~~~");
//创建一个环形队列
CircleArray queue = new CircleArray(4); //说明设置4, 其队列的有效数据最大是3
char key = ' ';//接收用户输入
Scanner scanner = new Scanner(System.in);
boolean loop = true;
// 输出一个菜单
while (loop) {
System.out.println("s(show): 显示队列");
System.out.println("e(exit): 退出程序");
System.out.println("a(add): 添加数据到队列");
System.out.println("g(get): 从队列取出数据");
System.out.println("h(head): 查看队列头的数据");
key = scanner.next().charAt(0);//接收一个字符
switch (key) {
case 's':
queue.showQueue();
break;
case 'a':
System.out.println("输出一个数");
int value = scanner.nextInt();
queue.addQueue(value);
break;
case 'g'://取出数据
try {
int res = queue.getQueue();
System.out.printf("取出的数据是%d\n", res);
} catch (Exception e) {
// TODO: handle exception
System.out.println(e.getMessage());
}
break;
case 'h': // 查看队列头的数据
try {
int res = queue.headQueue();
System.out.printf("队列头的数据是%d\n", res);
} catch (Exception e) {
// TODO: handle exception
System.out.println(e.getMessage());
}
break;
case 'e': // 退出
scanner.close();
loop = false;
break;
default:
break;
}
}
System.out.println("程序退出~~");
}
}
class CircleArray {
private int maxSize; //表示数组的最大容量
//front 变量的含义做一个调整: front 就指向队列的第一个元素,也就是说 arr[front] 就是队列的第一个元素
//front 的初始值 = 0
private int front;
//rear 变量的含义做一个调整: rear 指向队列的最后一个元素的后一个位置。因为希望空出一个空间做为约定
//rear 的初始值 = 0
private int rear; //队列尾
private int[] arr; //该数组用于存放数据,模拟队列
public CircleArray(int arrMaxSize) {
maxSize = arrMaxSize;
arr = new int[maxSize];
}
//判断队列是否满
public boolean isFull() {
return (rear + 1) % maxSize == front;
}
//判断队列是否为空
public boolean isEmpty() {
return rear == front;
}
//添加数据到队列
public void addQueue(int n) {
// 判断队列是否满
if(isFull()) {
System.out.println("队列满,不能加入数据~");
return;
}
//直接将数据加入
arr[rear] = n;
//将 rear 后移, 这里必须考虑取模
rear = (rear + 1) % maxSize;
}
//获取队列的数据,出队列
public int getQueue() {
// 判断队列是否空
if(isEmpty()) {
//通过抛出异常
throw new RuntimeException("队列空,不能取数据");
}
// 这里需要分析出 front是指向队列的第一个元素
// 1、先把 front对应的值保留到一个临时变量
// 2、将 front 后移,考虑取模
// 3、将临时保存的变量返回
int value = arr[front];
front = (front + 1) % maxSize;
return value;
}
// 显示队列的所有数据
public void showQueue() {
// 遍历
if(isEmpty()) {
System.out.println("队列空的,没有数据~~");
return;
}
// 思路:从front开始遍历,遍历多少个元素
// 动脑筋
for(int i = front; i < front + size(); i++) {
System.out.printf("arr[%d]=%d\n", i % maxSize, arr[i % maxSize]);
}
}
//求出当前队列有效数据的个数
public int size() {
// rear = 2
// front = 1
// maxSize = 3
return (rear + maxSize - front) % maxSize;
}
//显示队列的头数据, 注意不是取出数据
public int headQueue() {
// 判断
if(isEmpty()) {
throw new RuntimeException("队列空的,没有数据~~");
}
return arr[front];
}
}
package nanjing.linkedlist;
/**
* 单链表应用实例
*
* @author xizheng
* @date 2023-01-28 15:03:26
*/
public class SingleLinkedListDemo {
public static void main(String[] args) {
//进行测试
//先创建节点
HeroNode hero1 = new HeroNode(1, "宋江", "及时雨");
HeroNode hero2 = new HeroNode(2, "卢俊义", "玉麒麟");
HeroNode hero3 = new HeroNode(3, "吴用", "智多星");
HeroNode hero4 = new HeroNode(4, "林冲", "豹子头");
//创建要给的链表
SingleLinkedList singleLinkedList = new SingleLinkedList();
//加入
singleLinkedList.add(hero1);
singleLinkedList.add(hero4);
singleLinkedList.add(hero2);
singleLinkedList.add(hero3);
//显示一把
singleLinkedList.list();
}
}
//定义SingleLinkedList 管理我们的英雄
class SingleLinkedList {
//先初始化一个头节点,头节点不要动,不存放具体的数据
private HeroNode head = new HeroNode(0, "", "");
//添加节点到单向链表
//思路,当不考虑编号顺序时
//1、找到当前链表的最后节点
//2、将最后这个节点的next 指向 新的节点
public void add(HeroNode heroNode) {
//因为head节点不能动,因此我们需要一个辅助遍历 temp
HeroNode temp = head;
while (true) {
//找到链表的最后
if(temp.next == null) {
break;
}
//如果没有找到最后,将temp后移
temp = temp.next;
}
//当退出while循环时,temp就指向了链表的最后
//将最后这个节点的next指向 新的节点
temp.next = heroNode;
}
//显示链表[遍历]
public void list() {
//判断链表是否为空
if(head.next == null) {
System.out.println("链表为空");
return;
}
//因为头节点,不能动,因此我们需要一个辅助变量来遍历
HeroNode temp = head.next;
while (true) {
//判断是否到链表最后
if(temp == null) {
break;
}
//输出节点的信息
System.out.println(temp);
//将temp后移,一定小心
temp = temp.next;
}
}
}
//定义HeroNode, 每个HeroNode 对象就是一个节点
class HeroNode {
public int no;
public String name;
public String nickname;
public HeroNode next; //指向下一个节点
//构造器
public HeroNode(int no, String name, String nickname) {
this.no = no;
this.name = name;
this.nickname = nickname;
}
//为了显示方法,我们重写toString
@Override
public String toString() {
return "HeroNode{" +
"no=" + no +
", name='" + name + '\'' +
", nickname='" + nickname + '\'' +
'}';
}
}
package nanjing.linkedlist;
/**
* 单链表应用实例
*
* @author xizheng
* @date 2023-01-28 15:03:26
*/
public class SingleLinkedListDemo {
public static void main(String[] args) {
//进行测试
//先创建节点
HeroNode hero1 = new HeroNode(1, "宋江", "及时雨");
HeroNode hero2 = new HeroNode(2, "卢俊义", "玉麒麟");
HeroNode hero3 = new HeroNode(3, "吴用", "智多星");
HeroNode hero4 = new HeroNode(4, "林冲", "豹子头");
//创建要给的链表
SingleLinkedList singleLinkedList = new SingleLinkedList();
//加入
// singleLinkedList.add(hero1);
// singleLinkedList.add(hero4);
// singleLinkedList.add(hero2);
// singleLinkedList.add(hero3);
//加入按照编号的顺序
singleLinkedList.addByOrder(hero1);
singleLinkedList.addByOrder(hero4);
singleLinkedList.addByOrder(hero2);
singleLinkedList.addByOrder(hero3);
//显示一把
singleLinkedList.list();
}
}
//定义SingleLinkedList 管理我们的英雄
class SingleLinkedList {
//先初始化一个头节点,头节点不要动,不存放具体的数据
private HeroNode head = new HeroNode(0, "", "");
//添加节点到单向链表
//思路,当不考虑编号顺序时
//1、找到当前链表的最后节点
//2、将最后这个节点的next 指向 新的节点
public void add(HeroNode heroNode) {
//因为head节点不能动,因此我们需要一个辅助遍历 temp
HeroNode temp = head;
while (true) {
//找到链表的最后
if(temp.next == null) {
break;
}
//如果没有找到最后,将temp后移
temp = temp.next;
}
//当退出while循环时,temp就指向了链表的最后
//将最后这个节点的next指向 新的节点
temp.next = heroNode;
}
//第二种方式在添加英雄时,根据排名将英雄插入到指定位置
//(如果有这个排名,则添加是吧,并给出提示)
public void addByOrder(HeroNode heroNode) {
//因为头节点不能动,因此我们仍然通过一个辅助指针(变量)来帮助找到添加的位置
//因为单链表,因为我们找的temp 是位于 添加位置的前一个节点,否则插入不了
HeroNode temp = head;
boolean flag = false;//false标志添加的编号是否存在,默认为false
while (true) {
if(temp.next == null) {//说明temp已经在链表的最后
break;
}
if(temp.next.no > heroNode.no) {//位置找到,就在temp的后面插入
break;
} else if(temp.next.no == heroNode.no) {//说明希望添加的heroNode的编号已然存在
flag = true; //说明编号存在
break;
}
temp = temp.next;//后移,遍历当前链表
}
//判断flag 的值
if(flag) { //不能添加,说明编号存在
System.out.printf("准备插入的英雄的编号 %d 已经存在了, 不能加入\n", heroNode.no);
} else {
//插入到链表中,temp的后面
heroNode.next = temp.next;
temp.next = heroNode;
}
}
//显示链表[遍历]
public void list() {
//判断链表是否为空
if(head.next == null) {
System.out.println("链表为空");
return;
}
//因为头节点,不能动,因此我们需要一个辅助变量来遍历
HeroNode temp = head.next;
while (true) {
//判断是否到链表最后
if(temp == null) {
break;
}
//输出节点的信息
System.out.println(temp);
//将temp后移,一定小心
temp = temp.next;
}
}
}
//定义HeroNode, 每个HeroNode 对象就是一个节点
class HeroNode {
public int no;
public String name;
public String nickname;
public HeroNode next; //指向下一个节点
//构造器
public HeroNode(int no, String name, String nickname) {
this.no = no;
this.name = name;
this.nickname = nickname;
}
//为了显示方法,我们重写toString
@Override
public String toString() {
return "HeroNode{" +
"no=" + no +
", name='" + name + '\'' +
", nickname='" + nickname + '\'' +
'}';
}
}
package nanjing.linkedlist;
/**
* 单链表应用实例
*
* @author xizheng
* @date 2023-01-28 15:03:26
*/
public class SingleLinkedListDemo {
public static void main(String[] args) {
//进行测试
//先创建节点
HeroNode hero1 = new HeroNode(1, "宋江", "及时雨");
HeroNode hero2 = new HeroNode(2, "卢俊义", "玉麒麟");
HeroNode hero3 = new HeroNode(3, "吴用", "智多星");
HeroNode hero4 = new HeroNode(4, "林冲", "豹子头");
//创建要给的链表
SingleLinkedList singleLinkedList = new SingleLinkedList();
//加入
// singleLinkedList.add(hero1);
// singleLinkedList.add(hero4);
// singleLinkedList.add(hero2);
// singleLinkedList.add(hero3);
//加入按照编号的顺序
singleLinkedList.addByOrder(hero1);
singleLinkedList.addByOrder(hero4);
singleLinkedList.addByOrder(hero2);
singleLinkedList.addByOrder(hero3);
//显示一把
singleLinkedList.list();
//测试修改节点的代码
HeroNode newHeroNode = new HeroNode(2, "小卢", "玉麒麟~~");
singleLinkedList.update(newHeroNode);
System.out.println("修改后的链表情况~~");
singleLinkedList.list();
}
}
//定义SingleLinkedList 管理我们的英雄
class SingleLinkedList {
//先初始化一个头节点,头节点不要动,不存放具体的数据
private HeroNode head = new HeroNode(0, "", "");
//添加节点到单向链表
//思路,当不考虑编号顺序时
//1、找到当前链表的最后节点
//2、将最后这个节点的next 指向 新的节点
public void add(HeroNode heroNode) {
//因为head节点不能动,因此我们需要一个辅助遍历 temp
HeroNode temp = head;
while (true) {
//找到链表的最后
if(temp.next == null) {
break;
}
//如果没有找到最后,将temp后移
temp = temp.next;
}
//当退出while循环时,temp就指向了链表的最后
//将最后这个节点的next指向 新的节点
temp.next = heroNode;
}
//第二种方式在添加英雄时,根据排名将英雄插入到指定位置
//(如果有这个排名,则添加是吧,并给出提示)
public void addByOrder(HeroNode heroNode) {
//因为头节点不能动,因此我们仍然通过一个辅助指针(变量)来帮助找到添加的位置
//因为单链表,因为我们找的temp 是位于 添加位置的前一个节点,否则插入不了
HeroNode temp = head;
boolean flag = false;//false标志添加的编号是否存在,默认为false
while (true) {
if(temp.next == null) {//说明temp已经在链表的最后
break;
}
if(temp.next.no > heroNode.no) {//位置找到,就在temp的后面插入
break;
} else if(temp.next.no == heroNode.no) {//说明希望添加的heroNode的编号已然存在
flag = true; //说明编号存在
break;
}
temp = temp.next;//后移,遍历当前链表
}
//判断flag 的值
if(flag) { //不能添加,说明编号存在
System.out.printf("准备插入的英雄的编号 %d 已经存在了, 不能加入\n", heroNode.no);
} else {
//插入到链表中,temp的后面
heroNode.next = temp.next;
temp.next = heroNode;
}
}
//修改节点的信息,根据no编号来修改,即no编号不能改.
//说明
//1.根据 newHeroNode的 no 来修改即可
public void update(HeroNode newHeroNode) {
//判断是否空
if(head.next == null) {
System.out.printf("链表为空");
return;
}
//找到需要修改的节点,根据no编号
//定义一个辅助变量
HeroNode temp = head.next;
boolean flag = false;//表示是否找到该节点
while (true) {
if(temp == null) {
break;//已经遍历完链表
}
if(temp.no == newHeroNode.no) {
//找到
flag = true;
break;
}
temp = temp.next;
}
//根据flag 判断是否找到要修改的节点
if(flag) {
temp.name = newHeroNode.name;
temp.nickname = newHeroNode.nickname;
} else { //没有找到
System.out.printf("没有找到 编号 %d 的节点,不能修改\n", newHeroNode.no);
}
}
//显示链表[遍历]
public void list() {
//判断链表是否为空
if(head.next == null) {
System.out.println("链表为空");
return;
}
//因为头节点,不能动,因此我们需要一个辅助变量来遍历
HeroNode temp = head.next;
while (true) {
//判断是否到链表最后
if(temp == null) {
break;
}
//输出节点的信息
System.out.println(temp);
//将temp后移,一定小心
temp = temp.next;
}
}
}
//定义HeroNode, 每个HeroNode 对象就是一个节点
class HeroNode {
public int no;
public String name;
public String nickname;
public HeroNode next; //指向下一个节点
//构造器
public HeroNode(int no, String name, String nickname) {
this.no = no;
this.name = name;
this.nickname = nickname;
}
//为了显示方法,我们重写toString
@Override
public String toString() {
return "HeroNode{" +
"no=" + no +
", name='" + name + '\'' +
", nickname='" + nickname + '\'' +
'}';
}
}
package nanjing.linkedlist;
/**
* 单链表应用实例
*
* @author xizheng
* @date 2023-01-28 15:03:26
*/
public class SingleLinkedListDemo {
public static void main(String[] args) {
//进行测试
//先创建节点
HeroNode hero1 = new HeroNode(1, "宋江", "及时雨");
HeroNode hero2 = new HeroNode(2, "卢俊义", "玉麒麟");
HeroNode hero3 = new HeroNode(3, "吴用", "智多星");
HeroNode hero4 = new HeroNode(4, "林冲", "豹子头");
//创建要给的链表
SingleLinkedList singleLinkedList = new SingleLinkedList();
//加入
// singleLinkedList.add(hero1);
// singleLinkedList.add(hero4);
// singleLinkedList.add(hero2);
// singleLinkedList.add(hero3);
//加入按照编号的顺序
singleLinkedList.addByOrder(hero1);
singleLinkedList.addByOrder(hero4);
singleLinkedList.addByOrder(hero2);
singleLinkedList.addByOrder(hero3);
//显示一把
singleLinkedList.list();
//测试修改节点的代码
HeroNode newHeroNode = new HeroNode(2, "小卢", "玉麒麟~~");
singleLinkedList.update(newHeroNode);
System.out.println("修改后的链表情况~~");
singleLinkedList.list();
//删除一个节点
singleLinkedList.del(1);
singleLinkedList.del(4);
System.out.println("删除后的链表情况~~");
singleLinkedList.list();
}
}
//定义SingleLinkedList 管理我们的英雄
class SingleLinkedList {
//先初始化一个头节点,头节点不要动,不存放具体的数据
private HeroNode head = new HeroNode(0, "", "");
//添加节点到单向链表
//思路,当不考虑编号顺序时
//1、找到当前链表的最后节点
//2、将最后这个节点的next 指向 新的节点
public void add(HeroNode heroNode) {
//因为head节点不能动,因此我们需要一个辅助遍历 temp
HeroNode temp = head;
while (true) {
//找到链表的最后
if(temp.next == null) {
break;
}
//如果没有找到最后,将temp后移
temp = temp.next;
}
//当退出while循环时,temp就指向了链表的最后
//将最后这个节点的next指向 新的节点
temp.next = heroNode;
}
//第二种方式在添加英雄时,根据排名将英雄插入到指定位置
//(如果有这个排名,则添加是吧,并给出提示)
public void addByOrder(HeroNode heroNode) {
//因为头节点不能动,因此我们仍然通过一个辅助指针(变量)来帮助找到添加的位置
//因为单链表,因为我们找的temp 是位于 添加位置的前一个节点,否则插入不了
HeroNode temp = head;
boolean flag = false;//false标志添加的编号是否存在,默认为false
while (true) {
if(temp.next == null) {//说明temp已经在链表的最后
break;
}
if(temp.next.no > heroNode.no) {//位置找到,就在temp的后面插入
break;
} else if(temp.next.no == heroNode.no) {//说明希望添加的heroNode的编号已然存在
flag = true; //说明编号存在
break;
}
temp = temp.next;//后移,遍历当前链表
}
//判断flag 的值
if(flag) { //不能添加,说明编号存在
System.out.printf("准备插入的英雄的编号 %d 已经存在了, 不能加入\n", heroNode.no);
} else {
//插入到链表中,temp的后面
heroNode.next = temp.next;
temp.next = heroNode;
}
}
//修改节点的信息,根据no编号来修改,即no编号不能改.
//说明
//1.根据 newHeroNode的 no 来修改即可
public void update(HeroNode newHeroNode) {
//判断是否空
if(head.next == null) {
System.out.printf("链表为空");
return;
}
//找到需要修改的节点,根据no编号
//定义一个辅助变量
HeroNode temp = head.next;
boolean flag = false;//表示是否找到该节点
while (true) {
if(temp == null) {
break;//已经遍历完链表
}
if(temp.no == newHeroNode.no) {
//找到
flag = true;
break;
}
temp = temp.next;
}
//根据flag 判断是否找到要修改的节点
if(flag) {
temp.name = newHeroNode.name;
temp.nickname = newHeroNode.nickname;
} else { //没有找到
System.out.printf("没有找到 编号 %d 的节点,不能修改\n", newHeroNode.no);
}
}
//删除节点
//思路
//1. head 不能动,因此我们需要一个temp辅助节点找到待删除节点的前一个节点
//2. 说明我们在比较时,是temp.next.no 和 需要删除的节点的no比较
public void del(int no) {
HeroNode temp = head;
boolean flag = false; // 标志是否找到待删除节点的
while(true) {
if(temp.next == null) { //已经到链表的最后
break;
}
if(temp.next.no == no) {
//找到的待删除节点的前一个节点temp
flag = true;
break;
}
temp = temp.next; //temp后移,遍历
}
//判断flag
if(flag) { //找到
//可以删除
temp.next = temp.next.next;
}else {
System.out.printf("要删除的 %d 节点不存在\n", no);
}
}
//显示链表[遍历]
public void list() {
//判断链表是否为空
if(head.next == null) {
System.out.println("链表为空");
return;
}
//因为头节点,不能动,因此我们需要一个辅助变量来遍历
HeroNode temp = head.next;
while (true) {
//判断是否到链表最后
if(temp == null) {
break;
}
//输出节点的信息
System.out.println(temp);
//将temp后移,一定小心
temp = temp.next;
}
}
}
//定义HeroNode, 每个HeroNode 对象就是一个节点
class HeroNode {
public int no;
public String name;
public String nickname;
public HeroNode next; //指向下一个节点
//构造器
public HeroNode(int no, String name, String nickname) {
this.no = no;
this.name = name;
this.nickname = nickname;
}
//为了显示方法,我们重写toString
@Override
public String toString() {
return "HeroNode{" +
"no=" + no +
", name='" + name + '\'' +
", nickname='" + nickname + '\'' +
'}';
}
}