前置知识:直接积分法
设函数 u = u ( x ) u=u(x) u=u(x)和 v = v ( x ) v=v(x) v=v(x)连续且可导,则
( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)′=u′v+uv′
移项后可得
u v ′ = ( u v ) ′ − u ′ v uv'=(uv)'-u'v uv′=(uv)′−u′v
两边同时积分可得
∫ u v ′ d x = u v − ∫ u ′ v d x \int uv'dx=uv-\int u'vdx ∫uv′dx=uv−∫u′vdx
也可写作 ∫ u d v = u v − ∫ v d u \int udv=uv-\int vdu ∫udv=uv−∫vdu
当 ∫ u d v \int udv ∫udv求起来比较困难,但 u v uv uv和 ∫ v d u \int vdu ∫vdu比较好求时,可以用分部积分法来求 ∫ u d v \int udv ∫udv。
题1: 计算 ∫ x e x d x \int xe^xdx ∫xexdx
解:
\qquad 原式 = 1 2 ∫ ln x d ( x 2 ) = 1 2 x 2 ln x − 1 2 ∫ x 2 d ( ln x ) =\dfrac 12\int \ln xd(x^2)=\dfrac 12x^2\ln x-\dfrac 12\int x^2d(\ln x) =21∫lnxd(x2)=21x2lnx−21∫x2d(lnx)
= 1 2 x 2 ln x − 1 2 ∫ x 2 ⋅ 1 x d x = 1 2 x 2 ln x − 1 2 ∫ x d x \qquad\qquad =\dfrac 12x^2\ln x-\dfrac 12\int x^2\cdot\dfrac 1xdx=\dfrac 12x^2\ln x-\dfrac 12\int xdx =21x2lnx−21∫x2⋅x1dx=21x2lnx−21∫xdx
= 1 2 x 2 ln x − 1 4 x 2 + C \qquad\qquad =\dfrac 12x^2\ln x-\dfrac 14x^2+C =21x2lnx−41x2+C
题2: 计算 ∫ x ln x d x \int x\ln xdx ∫xlnxdx
解:
\qquad 原式 = 1 2 ∫ ln x d ( x 2 ) = 1 2 x 2 ln x − 1 2 ∫ x 2 d ( ln x ) =\dfrac 12\int \ln xd(x^2)=\dfrac 12x^2\ln x-\dfrac 12\int x^2d(\ln x) =21∫lnxd(x2)=21x2lnx−21∫x2d(lnx)
= 1 2 x 2 ln x − 1 2 ∫ x 2 ⋅ 1 x d x = 1 2 x 2 ln x − 1 2 ∫ x d x \qquad\qquad =\dfrac 12x^2\ln x-\dfrac 12\int x^2\cdot\dfrac 1xdx=\dfrac 12x^2\ln x-\dfrac 12\int xdx =21x2lnx−21∫x2⋅x1dx=21x2lnx−21∫xdx
= 1 2 x 2 ln x − 1 4 x 2 + C \qquad\qquad =\dfrac 12x^2\ln x-\dfrac 14x^2+C =21x2lnx−41x2+C
题3: 计算 ∫ arctan x d x \int \arctan xdx ∫arctanxdx
解:
\qquad 原式 = x arctan x − ∫ x d ( arctan x ) = x arctan x − ∫ x 1 + x 2 d x =x\arctan x-\int xd(\arctan x)=x\arctan x-\int\dfrac{x}{1+x^2}dx =xarctanx−∫xd(arctanx)=xarctanx−∫1+x2xdx
= x arctan x − 1 2 ∫ 1 1 + x 2 d ( x 2 + 1 ) = x arctan x − 1 2 ln ( x 2 + 1 ) + C \qquad\qquad =x\arctan x-\dfrac 12\int \dfrac{1}{1+x^2}d(x^2+1)=x\arctan x-\dfrac 12\ln(x^2+1)+C =xarctanx−21∫1+x21d(x2+1)=xarctanx−21ln(x2+1)+C
在解决这类问题时,要仔细思考将那一部分当作函数 u u u才能更好地解题。一般情况下, u u u的优先级为: