- 供应链工作效率如何提升
dev.null
社会供应链
提升供应链工作效率可以从以下几个关键方面入手:1.优化供应链管理数据驱动决策:利用AI和大数据分析,提高预测准确性,优化库存管理。供应链可视化:采用ERP(企业资源计划)和SCM(供应链管理)系统,实现实时跟踪和监控。流程自动化:使用RPA(机器人流程自动化)减少人为操作,提高效率。2.提高物流效率智能调度:使用AI优化配送路线,减少运输时间和成本。自动化仓储:采用自动分拣、机器人搬运、无人机配送
- 【人工智能】农业工程与信息技术文献推荐
lisw05
人工智能农业信息技术机器人
李升伟整理1.农业物联网与智能化管理《农业物联网导论》作者:李道亮内容简介:本书系统介绍了农业物联网的基本概念、技术架构及其在农业生产中的应用,包括传感器网络、远程监控、智能决策支持系统等。《农业信息智能获取技术》作者:岳峻、傅泽田、高文内容简介:重点探讨了如何利用信息技术获取农业数据,包括遥感技术、无人机监测和传感器网络的应用。2.农业大数据与决策支持《农业大数据:理论与实践》作者:梅方权内容简
- phoenix无法连接hbase shell创建表失败_报错_PleaseHoldException: Master is initializing---记录020_大数据工作笔记0180
添柴程序猿
hbase连接报错phoenix连接hbasephoenixPleaseHoldExcep
今天发现,我的phoenix,去连接hbase集群,怎么也连不上了,奇怪了...弄了一晚上org.apache.hadoop.hbase.PleaseHoldException:Masterisinitializing[root@hadoop120bin]#ll总用量184-rwxr-xr-x.1rootroot36371月222020chaos-daemon.sh-rwxr-xr-x.1root
- 物联网-电路局“一杆一档”管理
小赖同学啊
智能硬件物联网
电路局“一杆一档”管理及设备管理维修的技术实现为了实现电路局对电杆及其安装设备的“一杆一档”管理,并结合设备管理、维修等相关工作,可以通过物联网(IoT)、地理信息系统(GIS)、大数据、人工智能(AI)和移动互联网等技术手段,构建一个智能化、数字化的管理系统。以下是详细的技术实现方案。1.实现目标“一杆一档”管理:为每根电杆建立唯一的数字化档案,记录其位置、型号、安装时间、维护记录等信息。对电杆
- 2025最新Linux系统深度优化指南:20个核心技巧与实战案例解析
emmm形成中
linux应用实操服务器linuxgithub
2025最新Linux系统深度优化指南:20个核心技巧与实战案例解析摘要:随着Linux在云计算、大数据、AI等领域的广泛应用,系统性能优化成为运维工程师的核心技能。本文结合2025年最新实践案例,从内核调优、资源管理、安全加固到云原生适配,全面解析Linux系统优化的20项核心技术,助力企业打造高性能、高可用的服务器环境。一、Linux系统优化的重要性与趋势在数字化转型加速的背景下,Linux系
- 大数据与hdfs创建文件夹
猫猫头有亿点炸
大数据hdfshadoop
注意事项:在hdfs上操作的文件,创建文件的时候注意他与linux是不一样的(模式如下:)hdfsdfs-mkdir/test1错误示例:否则,无论如何hdfsdfs-ls/test1/都没有文件的
- 【基础5】归并排序
流光听风语
基础算法排序算法算法
核心思路归并排序基本思想是将一个数组分成两个子数组,分别对这两个子数组进行排序,然后将排好序的子数组合并成一个最终的有序数组,即分治法:分:将数组递归拆分成左右两半,直到每个子数组只剩1个元素(天然有序)。治:将两个有序子数组合并为一个有序数组,直到合并成完整数组。优缺点优点缺点✅稳定排序(相等元素顺序不变)❌额外空间(需O(n)临时数组)✅时间复杂度稳定O(nlogn)❌递归可能栈溢出(极大数据
- Java 中操作 R:深度整合与高效应用
froginwe11
开发语言
Java中操作R:深度整合与高效应用引言随着大数据和机器学习的快速发展,R语言在数据分析和可视化方面扮演着越来越重要的角色。而Java作为一种广泛应用于企业级应用开发的语言,其强大的功能和稳定性使其成为构建高性能应用的首选。本文将探讨Java如何操作R语言,实现高效的数据分析应用。一、Java操作R的背景R语言优势:R语言拥有丰富的统计分析、数据可视化工具和机器学习算法库,是数据分析领域的首选语言
- 数据集与云计算:云端数据集的管理与应用
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1大数据时代的数据挑战步入21世纪,我们见证了信息技术的爆炸式增长,数据以前所未有的速度产生、存储和使用。从社交媒体互动到科学研究,从电子商务交易到物联网传感器,各行各业都被海量数据所淹没。这种数据爆炸式增长带来了前所未有的机遇和挑战。1.1.1机遇:数据驱动型决策数据的激增为企业和组织提供了前所未有的洞察力。通过分析和理解这些数据,我们可以识别趋势、预测未来行为并做出更明智的决策
- AI 大模型应用数据中心建设:数据中心成本优化
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
AI大模型应用数据中心建设:数据中心成本优化1.背景介绍在人工智能(AI)和大模型应用的快速发展中,数据中心(DataCenter)成为了一个至关重要的组成部分。无论是进行深度学习模型的训练,还是大模型应用的推理,数据中心都需要提供充足的计算资源、存储空间和网络带宽。随着AI模型和大数据量的增长,数据中心的建设和管理成本逐渐成为AI技术落地和应用的核心挑战之一。为了优化数据中心成本,同时保持高性能
- Hadoop的运行模式
对许
#Hadoophadoop大数据分布式
Hadoop的运行模式1、本地运行模式2、伪分布式运行模式3、完全分布式运行模式4、区别与总结Hadoop有三种可以运行的模式:本地运行模式、伪分布式运行模式和完全分布式运行模式1、本地运行模式本地运行模式无需任何守护进程,单机运行,所有的程序都运行在同一个JVM上执行Hadoop安装后默认为本地模式,数据存储在Linux本地。在本地模式下调试MapReduce程序非常高效方便,一般该模式主要是在
- 信号处理应用:电力系统中的信号处理_(9).基于电力系统信号的数据挖掘技术
kkchenkx
信号处理技术仿真模拟信号处理数据挖掘人工智能
基于电力系统信号的数据挖掘技术1.引言电力系统中的信号处理是一个重要的研究领域,涉及电力系统的监测、故障诊断、状态评估等多个方面。随着大数据和人工智能技术的发展,数据挖掘技术在电力系统中的应用越来越广泛。本节将介绍如何利用数据挖掘技术对电力系统中的信号进行处理和分析,以提高系统的可靠性和效率。2.电力系统中的信号类型在电力系统中,信号可以分为多种类型,包括:电压信号:反映电力系统的电压水平,用于检
- CCF-GESP Python一级考试全解析:网络协议+编程技能双突破
奕澄羽邦
python网络协议开发语言
第一章CCF-GESP考试全景透视1.1认证体系权威性中国计算机学会(CCF)主办的GESP编程能力等级认证,是国内首个面向青少年的编程能力标准化评估体系。Python一级考试作为入门级认证,主要考察考生对计算机基础逻辑、编程工具使用及网络基础概念的掌握程度,证书受教育部认可,为后续人工智能、大数据等领域学习奠定基石。1.2考试内容三维度编程语言:Python语法基础(变量、循环、条件判断)、函数
- 2024年大数据最新图解curator如何实现zookeeper分布式锁_curator 锁(3)
2401_84183802
程序员分布式大数据zookeeper
三、Zookeeper分布式锁概述1、Zookeeper分布式锁实现思路2、Zookeeper分布式锁解决的问题3、Zookeeper分布式锁优缺点?四、InterProcessMute实现分布式锁原理1、加锁流程(acquire()方法)0)加锁流程图1)internalLock()LockDatainternalLock()方法逻辑2)LockInternals#attemptLock()--
- 物联网通过数字孪生技术实现设备状态的实时仿真和优化
小赖同学啊
智能硬件物联网
数字孪生(DigitalTwin)是一种通过虚拟模型实时映射和仿真物理设备状态的技术。它结合了物联网(IoT)、大数据、人工智能(AI)和仿真技术,能够实现对设备状态的实时监控、预测和优化。以下是数字孪生技术在设备状态实时仿真和优化中的应用及实现路径:一、数字孪生的核心概念1.物理实体实际的设备或系统(如工厂设备、风力发电机、汽车)。2.虚拟模型物理实体的数字化表示,通常包括几何模型、行为模型和数
- 数据湖架构与实时数仓实践:Hudi、Iceberg、Kafka + Flink + Spark
晴天彩虹雨
架构kafkaflink数据仓库
1.引言:数据湖与数据仓库的融合趋势在大数据时代,传统的数据仓库(DataWarehouse,DW)因其强一致性和高效查询能力,一直是企业数据分析的核心。然而,随着数据量和数据类型的爆炸式增长,传统数据仓库的存储成本和数据管理难度逐渐增加。为了解决这些问题,数据湖(DataLake)概念应运而生。数据湖能够存储原始数据,支持半结构化和非结构化数据,提供更灵活的计算框架,但其缺乏事务管理和数据一致性
- 笔试题6:销售区域业绩对比
clownAdam
大数据笔试题数据库sql大数据面试笔试数据分析
2025年3月某运营商大数据笔试题(真实)并附有解答和解析说明笔试题6销售区域业绩对比:有一份销售业绩数据文件regional_sales.csv,包含字段:region(销售区域)、product_category(产品类别)、sales_amount(销售金额)。请使用SQL完成以下任务:统计每个销售区域各类产品的总销售金额,结果按销售区域和产品类别排序。找出每个销售区域销售金额最高的产品类别
- Laravel如何实现MySQL分库分表的功能?使用场景是什么?底层原理是什么?
快点好好学习吧
Laravellaravelmysqlphp
一、MySQL分库分表的定义1.核心定义分库(Sharding):将数据分散到多个数据库中,以减轻单个数据库的压力。分表(Partitioning):将一个大表拆分为多个小表,通常基于某种规则(如用户ID或时间戳)。目的:提高系统的扩展性、性能和可用性。二、使用场景1.常见使用场景高并发系统:数据量巨大且访问频率高的场景(如电商平台、社交网络)。大数据存储:单表数据量超过千万甚至亿级时,需要分表以
- Hadoop的mapreduce的执行过程
画纸仁
大数据hadoopmapreduce大数据
一、map阶段的执行过程第一阶段:把输入目录下文件按照一定的标准逐个进行逻辑切片,形成切片规划。默认Splitsize=Blocksize(128M),每一个切片由一个MapTask处理。(getSplits)第二阶段:对切片中的数据按照一定的规则读取解析返回对。默认是按行读取数据。key是每一行的起始位置偏移量,value是本行的文本内容。(TextInputFormat)第三阶段:调用Mapp
- Hadoop:分布式计算平台初探
dccrtbn6261333
大数据运维java
Hadoop是一个开发和运行处理大规模数据的软件平台,是Apache的一个用java语言实现开源软件框架,实现在大量计算机组成的集群中对海量数据进行分布式计算。Hadoop框架中最核心设计就是:MapReduce和HDFS。MapReduce提供了对数据的计算,HDFS提供了海量数据的存储。MapReduceMapReduce的思想是由Google的一篇论文所提及而被广为流传的,简单的一句话解释M
- 探秘开源项目 MapReduce:分布式计算的新篇章
褚知茉Jade
探秘开源项目MapReduce:分布式计算的新篇章去发现同类优质开源项目:https://gitcode.com/在大数据处理领域,一个名字始终熠熠生辉,那就是。这是一个由Google提出的并被广泛应用的编程模型,用于大规模数据集的并行计算。本文将带你深入了解这一开源实现的魅力,分析其技术原理,探讨它的应用场景,并揭示它独特的特性。项目简介该项目是ChubbyJiang对原始GoogleMapRe
- 基于Python的微博舆情分析与可视化系统【附源码】
AI博士小张
python数据分析数据库
基于Python的微博舆情分析与可视化系统摘要研究背景及意义一、数据流程总体架构二、详细处理流程与代码实现1.数据采集模块2.数据清洗与预处理3.情感分析与特征工程4.舆情分析模型5.可视化呈现三、性能优化要点摘要基于Python的微博舆情分析与可视化系统旨在利用大数据和自然语言处理技术,实时抓取、分析微博平台上的用户言论,并通过可视化手段揭示舆情的动态演变规律。系统采用Python技术栈,结合网
- MapReduce:分布式计算的基石
Earth explosion
mapreduce大数据
MapReduce是一种用于处理和生成大数据集的编程模型,以及一个用于执行该模型的关联实现。它使得在大型商用硬件集群(数千台机器)上进行并行处理海量数据成为可能。本文将深入探讨MapReduce的核心概念、工作原理、应用场景以及一些高级主题。核心概念:分而治之MapReduce的核心思想是“分而治之”。它将复杂的计算任务分解成两个主要阶段:Map阶段和Reduce阶段。Map阶段:输入数据被分割成
- 【Hadoop】如何理解MapReduce?
2302_79952574
hadoopmapreduce数据库
MapReduce是一种用于处理大规模数据集的编程模型和计算框架。它的核心思想是将复杂的计算任务分解为两个简单的阶段:Map(映射)和Reduce(归约)。通过这种方式,MapReduce可以高效地并行处理海量数据。一.MapReduce的核心概念1.Map(映射):将输入数据分割成小块,并对每个小块进行初步处理。输出键值对(key-valuepairs),例如。2.Shuffle和Sort(洗牌
- 区块链大数据平台搭建系列(二):如何搭建以太坊RPC节点
WuJiWeb3
从0到1搭建区块链大数据平台rpcweb3bigdatakafka数据仓库github
Erigon是Ethereum(执行客户端)的一个实现,效率高,用Go编写。这里我们将采用Erigon进行搭建生产环境的以太坊RPC节点。环境准备1.系统要求操作系统:Ubuntu20.04或更高版本。硬件要求:由于Erigon会存储大量区块链数据,需要至少2TB的NVMeSSD磁盘、32GB或更多的内存(推荐64GB),以及8核CPU或更高的配置以提高性能。2.安装必需的软件包运行以下命令来安装
- 大数据实战:Spark + Hive 逐笔计算用户盈亏
WuJiWeb3
区块链链上数据分析从0到1搭建区块链大数据平台sparkhive大数据web3区块链hadoop
简介本文将通过使用Spark+Hive实现逐笔计算区块链上用户交易数据的盈亏需求。由于我们是进行离线计算,所以我们的数据源是Hive表数据,Sink表也是Hive表,即Spark读取Hive表数据进行批计算之后写回到Hive表并供后续使用。通过本文你将会学到:如何使用SparkSQLAPI读取Hive数据源如何通过读取配置文件进行传参执行SQL如何将SparkSQL转换为JavaRDD进行处理如何
- 大数据测试总结
SuperCreators
大数据测试hive数据仓库大数据
总结测试要点:参考产品文档,技术文档梳理以下内容需求来源业务方应用场景数据源,数据格转,数据产出,数据呈现方式(数据消亡史),数据量级(增量,全量),更新频率,数据产出时效数据流转方式(http接口,GRPC接口,中间表,宽表等)数据多样性(不同类型维度的处理数据,例如被标识的维度数据以用户为例:客户,客服,用户,玩家等)使用数据的频次频率(相对应的查询服务数据库的压力,接口服务器的压力,评测是否
- 大数据分析服务器硬件配置如何选择
elva428204358
服务器服务器
大数据,现如今已被人工智能替代。我们先不讨论人工智能,就大数据而言,我们都是在强调他的技术,而我们在用大数据时候,经常用它的来神话它的影响。例如,广告投放精准化,社会安全管理有序,医药行业智能化等。一、建立大数据分析服务器的五个基本方面1、可视化分析:大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,
- Hadoop:全面深入解析
CloudJourney
hadoop大数据分布式
Hadoop是一个用于大规模数据处理的开源框架,其设计旨在通过集群的方式进行分布式存储和计算。本篇博文将从Hadoop的定义、架构、原理、应用场景以及常见命令等多个方面进行详细探讨,帮助读者全面深入地了解Hadoop。1.Hadoop的定义1.1什么是HadoopHadoop是由Apache软件基金会开发的开源软件框架,用于存储和处理大规模数据。其核心组件包括Hadoop分布式文件系统(HDFS)
- 《DeepSeek+Langchain落地实操:RAG知识增强检索和智能体实战开发》
AI周红伟
langchain
大数据与人工智能实战专家—周红伟老师法国科学院数据算法博士/曾任阿里人工智能专家/曾任马上消费金融风控负责人课程背景LangChain是一项旨在赋能开发人员利用语言模型构建端到端应用程序的强大框架。它的设计理念在于简化和加速利用大型语言模型(LLM)和对话模型构建应用程序的过程。这个框架提供了一套全面的工具、组件和接口,旨在简化基于大型语言模型和对话模型的应用程序开发过程。LangChain本质上
- Dom
周华华
JavaScripthtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 【Spark九十六】RDD API之combineByKey
bit1129
spark
1. combineByKey函数的运行机制
RDD提供了很多针对元素类型为(K,V)的API,这些API封装在PairRDDFunctions类中,通过Scala隐式转换使用。这些API实现上是借助于combineByKey实现的。combineByKey函数本身也是RDD开放给Spark开发人员使用的API之一
首先看一下combineByKey的方法说明:
- msyql设置密码报错:ERROR 1372 (HY000): 解决方法详解
daizj
mysql设置密码
MySql给用户设置权限同时指定访问密码时,会提示如下错误:
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number;
问题原因:你输入的密码是明文。不允许这么输入。
解决办法:用select password('你想输入的密码');查询出你的密码对应的字符串,
然后
- 路漫漫其修远兮 吾将上下而求索
周凡杨
学习 思索
王国维在他的《人间词话》中曾经概括了为学的三种境界古今之成大事业、大学问者,罔不经过三种之境界。“昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境界也。“衣带渐宽终不悔,为伊消得人憔悴。”此第二境界也。“众里寻他千百度,蓦然回首,那人却在灯火阑珊处。”此第三境界也。学习技术,这也是你必须经历的三种境界。第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。这里,注
- Hadoop(二)对话单的操作
朱辉辉33
hadoop
Debug:
1、
A = LOAD '/user/hue/task.txt' USING PigStorage(' ')
AS (col1,col2,col3);
DUMP A;
//输出结果前几行示例:
(>ggsnPDPRecord(21),,)
(-->recordType(0),,)
(-->networkInitiation(1),,)
- web报表工具FineReport常用函数的用法总结(日期和时间函数)
老A不折腾
finereport报表工具web开发
web报表工具FineReport常用函数的用法总结(日期和时间函数)
说明:凡函数中以日期作为参数因子的,其中日期的形式都必须是yy/mm/dd。而且必须用英文环境下双引号(" ")引用。
DATE
DATE(year,month,day):返回一个表示某一特定日期的系列数。
Year:代表年,可为一到四位数。
Month:代表月份。
- c++ 宏定义中的##操作符
墙头上一根草
C++
#与##在宏定义中的--宏展开 #include <stdio.h> #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main() { &nbs
- 分析Spring源代码之,DI的实现
aijuans
springDI现源代码
(转)
分析Spring源代码之,DI的实现
2012/1/3 by tony
接着上次的讲,以下这个sample
[java]
view plain
copy
print
- for循环的进化
alxw4616
JavaScript
// for循环的进化
// 菜鸟
for (var i = 0; i < Things.length ; i++) {
// Things[i]
}
// 老鸟
for (var i = 0, len = Things.length; i < len; i++) {
// Things[i]
}
// 大师
for (var i = Things.le
- 网络编程Socket和ServerSocket简单的使用
百合不是茶
网络编程基础IP地址端口
网络编程;TCP/IP协议
网络:实现计算机之间的信息共享,数据资源的交换
协议:数据交换需要遵守的一种协议,按照约定的数据格式等写出去
端口:用于计算机之间的通信
每运行一个程序,系统会分配一个编号给该程序,作为和外界交换数据的唯一标识
0~65535
查看被使用的
- JDK1.5 生产消费者
bijian1013
javathread生产消费者java多线程
ArrayBlockingQueue:
一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。队列的头部 是在队列中存在时间最长的元素。队列的尾部 是在队列中存在时间最短的元素。新元素插入到队列的尾部,队列检索操作则是从队列头部开始获得元素。
ArrayBlockingQueue的常用方法:
- JAVA版身份证获取性别、出生日期及年龄
bijian1013
java性别出生日期年龄
工作中需要根据身份证获取性别、出生日期及年龄,且要还要支持15位长度的身份证号码,网上搜索了一下,经过测试好像多少存在点问题,干脆自已写一个。
CertificateNo.java
package com.bijian.study;
import java.util.Calendar;
import
- 【Java范型六】范型与枚举
bit1129
java
首先,枚举类型的定义不能带有类型参数,所以,不能把枚举类型定义为范型枚举类,例如下面的枚举类定义是有编译错的
public enum EnumGenerics<T> { //编译错,提示枚举不能带有范型参数
OK, ERROR;
public <T> T get(T type) {
return null;
- 【Nginx五】Nginx常用日志格式含义
bit1129
nginx
1. log_format
1.1 log_format指令用于指定日志的格式,格式:
log_format name(格式名称) type(格式样式)
1.2 如下是一个常用的Nginx日志格式:
log_format main '[$time_local]|$request_time|$status|$body_bytes
- Lua 语言 15 分钟快速入门
ronin47
lua 基础
-
-
单行注释
-
-
[[
[多行注释]
-
-
]]
-
-
-
-
-
-
-
-
-
-
-
1.
变量 & 控制流
-
-
-
-
-
-
-
-
-
-
num
=
23
-
-
数字都是双精度
str
=
'aspythonstring'
- java-35.求一个矩阵中最大的二维矩阵 ( 元素和最大 )
bylijinnan
java
the idea is from:
http://blog.csdn.net/zhanxinhang/article/details/6731134
public class MaxSubMatrix {
/**see http://blog.csdn.net/zhanxinhang/article/details/6731134
* Q35
求一个矩阵中最大的二维
- mongoDB文档型数据库特点
开窍的石头
mongoDB文档型数据库特点
MongoDD: 文档型数据库存储的是Bson文档-->json的二进制
特点:内部是执行引擎是js解释器,把文档转成Bson结构,在查询时转换成js对象。
mongoDB传统型数据库对比
传统类型数据库:结构化数据,定好了表结构后每一个内容符合表结构的。也就是说每一行每一列的数据都是一样的
文档型数据库:不用定好数据结构,
- [毕业季节]欢迎广大毕业生加入JAVA程序员的行列
comsci
java
一年一度的毕业季来临了。。。。。。。。
正在投简历的学弟学妹们。。。如果觉得学校推荐的单位和公司不适合自己的兴趣和专业,可以考虑来我们软件行业,做一名职业程序员。。。
软件行业的开发工具中,对初学者最友好的就是JAVA语言了,网络上不仅仅有大量的
- PHP操作Excel – PHPExcel 基本用法详解
cuiyadll
PHPExcel
导出excel属性设置//Include classrequire_once('Classes/PHPExcel.php');require_once('Classes/PHPExcel/Writer/Excel2007.php');$objPHPExcel = new PHPExcel();//Set properties 设置文件属性$objPHPExcel->getProperties
- IBM Webshpere MQ Client User Issue (MCAUSER)
darrenzhu
IBMjmsuserMQMCAUSER
IBM MQ JMS Client去连接远端MQ Server的时候,需要提供User和Password吗?
答案是根据情况而定,取决于所定义的Channel里面的属性Message channel agent user identifier (MCAUSER)的设置。
http://stackoverflow.com/questions/20209429/how-mca-user-i
- 网线的接法
dcj3sjt126com
一、PC连HUB (直连线)A端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 二、PC连PC (交叉线)A端:(568A): 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕; B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 三、HUB连HUB&nb
- Vimium插件让键盘党像操作Vim一样操作Chrome
dcj3sjt126com
chromevim
什么是键盘党?
键盘党是指尽可能将所有电脑操作用键盘来完成,而不去动鼠标的人。鼠标应该说是新手们的最爱,很直观,指哪点哪,很听话!不过常常使用电脑的人,如果一直使用鼠标的话,手会发酸,因为操作鼠标的时候,手臂不是在一个自然的状态,臂肌会处于绷紧状态。而使用键盘则双手是放松状态,只有手指在动。而且尽量少的从鼠标移动到键盘来回操作,也省不少事。
在chrome里安装 vimium 插件
- MongoDB查询(2)——数组查询[六]
eksliang
mongodbMongoDB查询数组
MongoDB查询数组
转载请出自出处:http://eksliang.iteye.com/blog/2177292 一、概述
MongoDB查询数组与查询标量值是一样的,例如,有一个水果列表,如下所示:
> db.food.find()
{ "_id" : "001", "fruits" : [ "苹
- cordova读写文件(1)
gundumw100
JavaScriptCordova
使用cordova可以很方便的在手机sdcard中读写文件。
首先需要安装cordova插件:file
命令为:
cordova plugin add org.apache.cordova.file
然后就可以读写文件了,这里我先是写入一个文件,具体的JS代码为:
var datas=null;//datas need write
var directory=&
- HTML5 FormData 进行文件jquery ajax 上传 到又拍云
ileson
jqueryAjaxhtml5FormData
html5 新东西:FormData 可以提交二进制数据。
页面test.html
<!DOCTYPE>
<html>
<head>
<title> formdata file jquery ajax upload</title>
</head>
<body>
<
- swift appearanceWhenContainedIn:(version1.2 xcode6.4)
啸笑天
version
swift1.2中没有oc中对应的方法:
+ (instancetype)appearanceWhenContainedIn:(Class <UIAppearanceContainer>)ContainerClass, ... NS_REQUIRES_NIL_TERMINATION;
解决方法:
在swift项目中新建oc类如下:
#import &
- java实现SMTP邮件服务器
macroli
java编程
电子邮件传递可以由多种协议来实现。目前,在Internet 网上最流行的三种电子邮件协议是SMTP、POP3 和 IMAP,下面分别简单介绍。
◆ SMTP 协议
简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)是一个运行在TCP/IP之上的协议,用它发送和接收电子邮件。SMTP 服务器在默认端口25上监听。SMTP客户使用一组简单的、基于文本的
- mongodb group by having where 查询sql
qiaolevip
每天进步一点点学习永无止境mongo纵观千象
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
- Struts2 Pojo(六)
Luob.
POJOstrust2
注意:附件中有完整案例
1.采用POJO对象的方法进行赋值和传值
2.web配置
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee&q
- struts2步骤
wuai
struts
1、添加jar包
2、在web.xml中配置过滤器
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.st