C++ 红黑树

红黑树

  • 红黑树
    • 红黑树的性质
    • 红黑树的结构
    • 红黑树的插入
      • 情况1
      • 情况2
      • 情况三
    • 实现代码
  • 红黑树模拟实现STL中的map/set
    • 迭代器
    • 改造红黑树
    • map
    • set
    • list

红黑树

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。

通过颜色互斥来控制平衡
近似平衡,最长路径最多是最短路径的二倍

红黑树的性质

  • 每个结点不是红色就是黑色
  • 根节点是黑色的
  • 如果一个节点是红色的,则它的两个孩子结点是黑色的(没有连续的红色结点)
  • 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点-》每条路径上都包含相同数量的黑色结点
  • 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)
    最短路径:全部由黑色结点构成
    最长路径:一黑一红,红色结点数量跟黑色结点数量相等
    思考:为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点个数的两
    倍?

红黑树的结构

为了后续实现关联式容器简单,红黑树的实现中增加一个头结点,因为跟节点必须为黑色,为了与根节点进行区分,将头结点给成黑色,并且让头结点的pParent域指向红黑树的根节点,pLeft域指向红黑树中最小的节点,_pRight域指向红黑树中最大的节点

红黑树的插入

因为新节点的默认颜色是红色,因此:如果其parent节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的parenet节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,
cur为当前节点,p->parent,g->grandfather,u->uncle

情况1

cur为红,p为红,g为黑,u存在且为红


注意:此时所看到的树,可能也是子树

C++ 红黑树_第1张图片
C++ 红黑树_第2张图片

情况2

cur为红,p为红,g为黑,u不存在/u存在且为黑

说明:
u的情况有两种

  • 1、如果u结点不存在,则cur一定是新插入结点,因为如果cur不是新插入结点,则cur和p一定有一个结点的颜色是黑色,不满足性质4:每条路径黑色结点相同
  • 2、如果u结点存在,则其一定是黑色的,那么cur结点原来的颜色一定是黑色的,现在看到是红色是因为cur在子树调整的过程中将cur结点的颜色由黑色改成红色
    p为g的左孩子,cur为p的左孩子,则进行右单旋转;
    相反,p为g的右孩子,cur为p的右孩子,则进行左单旋转
    p、g变色–p变黑,g变红

    C++ 红黑树_第3张图片
    C++ 红黑树_第4张图片

情况三

cur为红,p为红,g为黑,u不存在/u为黑

p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;
相反,p为g的右孩子,cur为p的左孩子,则针对p做右单旋转,则转换成了情况2

C++ 红黑树_第5张图片
C++ 红黑树_第6张图片

实现代码

(没封装版)

#pragma once
#include 
using namespace std;


//red-black tree
enum Color
{
	RED,
	BLACK
};
template<class K,class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;

	pair<K, V> _kv;
	Color _col;
	
	RBTreeNode(const pair<K,V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _col(RED)
	{}
};
template<class K,class V>
struct _TreeIterator
{
	typedef RBTreeNode<K, V> Node;
	Node* _node;
	_TreeIterator(Node* node)
		:_node(node)
	{}
	//operator*();
	//operator++();
	//operator--();
};
template<class K,class V>
class RBTree
{
	typedef RBTreeNode<K, V> Node;
public:
	RBTree()
		:_root(nullptr)
	{}
	void _Destory(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}
		_Destory(root->_left);
		_Destory(root->_right);
		delete root;
	}
	~RBTree()
	{
		_Destory(_root);
		_root = nullptr;
	}
	Node* Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first > key)
			{
				cur = cur->_left;
			}
			else if (cur->_kv.first < key)
			{
				cur = cur->_right;
			}
			else
			{
				return cur;
			}
		}
		return nullptr;
	}
	pair<Node*, bool> Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return make_pair(_root, true);
		} 
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return make_pair(cur, false);
			}
		}
		Node* newnode = new Node(kv);
		newnode->_col = RED;
		if (parent->_kv.first < kv.first)
		{
			parent->_right = newnode;
			newnode->_parent = parent;
		}
		else
		{
			parent->_left = newnode;
			newnode->_parent = parent;
		}
		//插入的结点是黑色还是红色?
		//插入红色结点,可能破坏规则3,但是影响不大
		//插入黑色结点,一定破坏规则4,并且会影响其他路径,影响面很大
		cur = newnode;
		//如果父亲存在,且颜色为红色就需要处理
		while (parent && parent->_col == RED)
		{
			//关键看叔叔
			Node* grandfather = parent->_parent;
			if (parent == grandfather->_left)
			{
				Node* uncle = grandfather->_right;
				if (uncle && uncle->_col == RED)
				{
					//情况1:uncle 存在且为红
					//把parent和uncle变黑,grandfather变红
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					//继续往上处理
					cur = grandfather;
					parent = cur->_parent;

				}
				else
				{
					//情况2+3
					//uncle不存在或uncle存在且为黑
					if (cur == parent->_left)
					{
						//情况2:需要右单旋
						RotateR(grandfather);
						grandfather->_col = RED;
						parent->_col = BLACK;
					}
					else
					{
						//情况3:左右双旋
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;

					}
					break;
				}
			}
			else//parent == grandfather->right
			{
				Node* uncle = grandfather->_left;
				if (uncle && uncle->_col == RED)
				{
					//情况一
					uncle->_col = parent->_col = BLACK;
					grandfather->_col = RED;
					cur = grandfather;
					parent = cur->_parent;

				}
				else
				{
					//情况2+情况3
					if (cur == parent->_right)
					{
						RotateL(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else // cur == parent->_left
					{
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					//插入结束
					break;
				}
			}

		}
		_root->_col = BLACK;
		return make_pair(newnode, true);
		
	}
	void RotateR(Node* parent)
	{
		Node* subl = parent->_left;
		Node* sublr = subl->_right;
		parent->_left = sublr;
		if (sublr)
		{
			sublr->_parent = parent;
		}

		subl->_right = parent;
		Node* parentparent = parent->_parent;
		parent->_parent = subl;
		if (parent == _root)
		{
			//是一个独立的树
			_root = subl;
			_root->_parent = nullptr;
		}
		else
		{
			//只是子树,parent还有parent
			if (parentparent->_left == parent)
			{
				parentparent->_left = subl;
			}
			else
			{
				parentparent->_right = subl;
			}
			subl->_parent = parentparent;
		}
		
	}
	void RotateL(Node* parent)
	{
		Node* subr = parent->_right;
		Node* subrl = subr->_left;

		parent->_right = subrl;
		if (subrl)
		{
			subrl->_parent = parent;
		}
		Node* parentparent = parent->_parent;
		subr->_left = parent;
		parent->_parent = subr;

		if (parent == _root)
		{
			//是独立的树
			_root = subr;
			_root->_parent = nullptr;
		}
		else
		{
			//是子树
			if (parentparent->_left == parent)
				parentparent->_left = subr;

			else
				parentparent->_right = subr;

			subr->_parent = parentparent;

		}
		
	}
	bool  _CheckBalance(Node* root, int blacknum, int count)
	{
		if (root == nullptr)
		{
			if (count != blacknum)
			{
				cout << "黑色结点数目不相等" << endl;
				return false;
			}
			return true;
		}
		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << "存在连续红色" << endl;
			return false;
		}
		if (root->_col == BLACK)
		{
			count++;
		}
		return _CheckBalance(root->_left,blacknum,count)
			&& _CheckBalance(root->_right,blacknum,count);
	}
	bool CheckBalance()
	{
		if (_root == nullptr)
		{
			return true;
		}
		if (_root->_col == RED)
		{
			cout << "root is red" << endl;
			return false;
		}
		//找最左路径做参考值
		int blacknum = 0;
		Node* left = _root;
		while (left)
		{
			if (left->_col == BLACK)
			{
				blacknum++;
			}
			left = left->_left;
		}
		int count = 0;
		return _CheckBalance(_root, blacknum, count);
	}
	void _Inorder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}
		_Inorder(root->_left);
		cout << root->_kv.first <<"->"<<root->_kv.second<< endl ;
		_Inorder(root->_right);
	}
	void Inorder()
	{
		_Inorder(_root);
		
	}

private:
	Node* _root;
};

红黑树模拟实现STL中的map/set

迭代器

#pragma once

// 反向迭代器--迭代器适配器
template<class Iterator>
struct ReverseIterator
{
	typedef typename Iterator::reference Ref;
	typedef typename Iterator::pointer Ptr;
	typedef ReverseIterator<Iterator> Self;
	Iterator _it;

	ReverseIterator(Iterator it)
		:_it(it)
	{}

	Ref operator*()
	{
		return *_it;
	}

	Ptr operator->()
	{
		return _it.operator->();
	}

	Self& operator++()
	{
		--_it;
		return *this;
	}

	Self& operator--()
	{
		++_it;
		rteurn *this;
	}

	bool operator!=(const Self& s) const
	{
		return _it != s._it;
	}

	bool operator==(const Self& s) const
	{
		return _it == s._it;
	}
};

改造红黑树

#pragma once
#include 
using namespace std;

#include "Iterator.h"
enum Colour
{
	RED,
	BLACK,
};

//red-black
template<class T>
struct RBTreeNode
{
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;
	T _data;

	Colour _col;

	RBTreeNode(const T& x)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _data(x)
		, _col(RED)
	{}
};

template<class T, class Ref, class Ptr>
struct __TreeIterator
{
	typedef Ref reference;
	typedef Ptr pointer;

	typedef RBTreeNode<T> Node;
	typedef __TreeIterator<T, Ref, Ptr> Self;

	Node* _node;

	__TreeIterator(Node* node)
		:_node(node)
	{}

	Ref operator*()
	{
		return _node->_data;
	}

	Ptr operator->()
	{
		return &_node->_data;
	}

	bool operator != (const Self& s) const
	{
		return _node != s._node;
	}

	bool operator == (const Self& s) const
	{
		return _node == s._node;
	}

	// 难点
	Self& operator++()
	{
		if (_node->_right)
		{
			// 下一个访问就是右树中,中序的第一个节点
			Node* left = _node->_right;
			while (left->_left)
			{
				left = left->_left;
			}

			_node = left;
		}
		else
		{
			// 找祖先里面孩子不是父亲的右的那个
			// 因为 cur 右为空,说明cur所在的子树已经访问完了
			// cur是parent的右的,说明parent也访问完了,继续往上去找
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_right)
			{
				cur = cur->_parent;
				parent = parent->_parent;
			}

			_node = parent;
		}

		return *this;
	}

	Self& operator--()
	{
		if (_node->_left)
		{
			// 左子树的最右节点
			Node* right = _node->_left;
			while (right->_right)
			{
				right = right->_right;
			}

			_node = right;
		}
		else
		{
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_left)
			{
				cur = parent;
				parent = parent->_parent;
			}

			_node = parent;
		}

		return *this;
	}
};

template<class K, class T, class KeyOfT>
class RBTree
{
	typedef RBTreeNode<T> Node;
public:
	typedef __TreeIterator < T, T&, T* > iterator;
	typedef __TreeIterator < T, const T&, const T* > const_iterator;
	typedef ReverseIterator<iterator> reverse_iterator;

	reverse_iterator rbegin()
	{
		Node* right = _root;
		while (right && right->_right)
		{
			right = right->_right;
		}
		return reverse_iterator(iterator(right));
	}

	reverse_iterator rend()
	{
		return reverse_iterator(iterator(nullptr));
	}

	iterator begin()
	{
		Node* left = _root;
		while (left && left->_left)
		{
			left = left->_left;
		}

		return iterator(left);
	}

	iterator end()
	{
		return iterator(nullptr);
	}

	RBTree()
		:_root(nullptr)
	{}


	void Destory(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}

		Destory(root->_left);
		Destory(root->_right);
		delete root;
	}

	~RBTree()
	{
		Destory(_root);
		_root = nullptr;
	}

	Node* Find(const K& key)
	{
		KeyOfT kot;
		Node* cur = _root;
		while (cur)
		{
			if (kot(cur->_data) > key)
			{
				cur = cur->_left;
			}
			else if (kot(cur->_data) < key)
			{
				cur = cur->_right;
			}
			else
			{
				return cur;
			}
		}

		return nullptr;
	}

	pair<iterator, bool> Insert(const T& data)
	{
		if (_root == nullptr)
		{
			_root = new Node(data);
			_root->_col = BLACK;
			return make_pair(iterator(_root), true);
		}

		KeyOfT kot;

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (kot(cur->_data) < kot(data))
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kot(cur->_data) > kot(data))
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return make_pair(iterator(cur), false);
			}
		}

		Node* newnode = new Node(data);
		newnode->_col = RED;
		if (kot(parent->_data) < kot(data))
		{
			parent->_right = newnode;
			newnode->_parent = parent;
		}
		else
		{
			parent->_left = newnode;
			newnode->_parent = parent;
		}
		cur = newnode;

		// 如果父亲存在,且颜色为红色就需要处理
		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;
			// 关键是看叔叔
			if (parent == grandfather->_left)
			{
				Node* uncle = grandfather->_right;
				// 情况1:uncle存在且为红
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					// 继续往上处理
					cur = grandfather;
					parent = cur->_parent;
				}
				else // 情况2+3:uncle不存在 uncle存在且为黑
				{
					// 情况2:单旋
					if (cur == parent->_left)
					{
						RotateR(grandfather);
						grandfather->_col = RED;
						parent->_col = BLACK;
					}
					else // 情况3:双旋
					{
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}

					break;
				}
			}
			else // parent == grandfather->_right
			{
				Node* uncle = grandfather->_left;
				// 情况1:
				if (uncle && uncle->_col == RED)
				{
					uncle->_col = parent->_col = BLACK;
					grandfather->_col = RED;

					cur = grandfather;
					parent = cur->_parent;
				}
				else // 情况2:+ 情况3:
				{
					if (cur == parent->_right)
					{
						RotateL(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else // cur == parent->_left
					{
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					// 插入结束
					break;
				}
			}
		}

		_root->_col = BLACK;
		return make_pair(iterator(newnode), true);
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
		{
			subRL->_parent = parent;
		}

		subR->_left = parent;
		Node* parentParent = parent->_parent;
		parent->_parent = subR;

		if (parent == _root)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}
			subR->_parent = parentParent;
		}
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		subL->_right = parent;
		Node* parentParent = parent->_parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
				parentParent->_left = subL;
			else
				parentParent->_right = subL;

			subL->_parent = parentParent;
		}
	}

	bool _CheckBlance(Node* root, int blackNum, int count)
	{
		if (root == nullptr)
		{
			if (count != blackNum)
			{
				cout << "黑色节点的数量不相等" << endl;
				return false;
			}

			return true;
		}

		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << "存在连续的红色节点" << endl;
			return false;
		}

		if (root->_col == BLACK)
		{
			count++;
		}

		return _CheckBlance(root->_left, blackNum, count)
			&& _CheckBlance(root->_right, blackNum, count);
	}

	bool CheckBlance()
	{
		if (_root == nullptr)
		{
			return true;
		}

		if (_root->_col == RED)
		{
			cout << "根节点是红色的" << endl;
			return false;
		}

		// 找最左路径做黑色节点数量参考值
		int blackNum = 0;
		Node* left = _root;
		while (left)
		{
			if (left->_col == BLACK)
			{
				blackNum++;
			}

			left = left->_left;
		}

		int count = 0;
		return _CheckBlance(_root, blackNum, count);
	}

	/*void _InOrder(Node* root)
	{
	if (root == nullptr)
	{
	return;
	}

	_InOrder(root->_left);
	cout << root->_kv.first << ":"<_kv.second<_right);
	}*/

	/*void InOrder()
	{
	_InOrder(_root);
	cout << endl;
	}
	*/
private:
	Node* _root;
};

map

#pragma once
#include "RBT2.h"


namespace rbt{
	template<class K, class V>
	class map
	{
		struct MapKeyOfT
		{
			const K& operator()(const pair<const K, V>& kv)
			{
				return kv.first;
			}
		};
	public:
		typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::iterator iterator;
		typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::reverse_iterator reverse_iterator;

		reverse_iterator rbegin()
		{
			return _t.rbegin();
		}

		reverse_iterator rend()
		{
			return _t.rend();
		}

		iterator begin()
		{
			return _t.begin();
		}

		iterator end()
		{
			return _t.end();
		}

		pair<iterator, bool> insert(const pair<const K, V>& kv)
		{
			return _t.Insert(kv);
		}

		V& operator[](const K& key)
		{
			pair<iterator, bool> ret = insert(make_pair(key, V()));
			return ret.first->second;
		}

	private:
		RBTree<K, pair<const K, V>, MapKeyOfT> _t;
	};
}

set

#pragma once
#include "RBT2.h"

namespace rbt
{
	template<class K>
	class Set
	{
		struct SetKeyOfT
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};
	public:
		typedef typename RBTree<K, K, SetKeyOfT>::iterator iterator;

		typedef typename RBTree<K, K, SetKeyOfT>::reverse_iterator reverse_iterator;

		reverse_iterator rbegin()
		{
			return _t.rbegin();
		}

		reverse_iterator rend()
		{
			return _t.rend();
		}


		iterator begin()
		{
			return _t.begin();
		}

		iterator end()
		{
			return _t.end();
		}

		pair<iterator, bool> insert(const K& k)
		{
			return _t.Insert(k);
		}
	private:
		RBTree<K, K, SetKeyOfT> _t;
	};
}

list

#pragma once
#include 
#include "Iterator.h"

namespace rbt
{
	template<class T>
	struct _list_node
	{
		T _val;
		_list_node<T>* _next;
		_list_node<T>* _prev;

		_list_node(const T& val = T())
			:_val(val)
			, _prev(nullptr)
			, _next(nullptr)
		{}
	};

	// typedef _list_iterartor iterator;
	// typedef _list_iterartor const_iterator;
	template<class T, class Ref, class Ptr>
	struct _list_iterartor
	{
		typedef Ref reference;
		typedef Ptr pointer;

		typedef _list_node<T> node;
		typedef _list_iterartor<T, Ref, Ptr> self;

		node* _pnode;

		_list_iterartor(node* pnode)
			:_pnode(pnode)
		{}

		// 拷贝构造、operator=、析构我们不写,编译器默认生成就可以用

		// T& operator*()		 iterator 可读可写
		// const T& operator*()  const_iterator 可读可写
		Ref operator*()
		{
			return _pnode->_val;
		}

		Ptr operator->()
		{
			return &_pnode->_val;
		}

		bool operator!=(const self& s) const
		{
			return _pnode != s._pnode;
		}

		bool operator==(const self& s) const
		{
			return _pnode == s._pnode;
		}

		// ++it -> it.operator++(&it)
		self& operator++()
		{
			_pnode = _pnode->_next;
			return *this;
		}

		// it++ -> it.operator++(&it, 0)
		self operator++(int)
		{
			self tmp(*this);
			_pnode = _pnode->_next;
			return tmp;
		}

		self& operator--()
		{
			_pnode = _pnode->_prev;
			return *this;
		}

		self operator--(int)
		{
			self tmp(*this);
			_pnode = _pnode->_prev;
			return tmp;
		}
	};


	template<class T>
	class list
	{
		typedef _list_node<T> node;
	public:
		typedef _list_iterartor<T, T&, T*> iterator;
		typedef _list_iterartor<T, const T&, const T*> const_iterator;
		typedef ReverseIterator<iterator> reverse_iterator;

		reverse_iterator rbegin()
		{
			return reverse_iterator(iterator(_head->_prev));
		}

		reverse_iterator rend()
		{
			return reverse_iterator(iterator(_head));
		}

		iterator begin()
		{
			return iterator(_head->_next);
		}

		const_iterator begin() const
		{
			return const_iterator(_head->_next);
		}

		iterator end()
		{
			return iterator(_head);
		}

		const_iterator end() const
		{
			return const_iterator(_head);
		}

		list()
		{
			//_head = new node(T());
			_head = new node;
			_head->_next = _head;
			_head->_prev = _head;
		}

		// copy(lt)
		list(const list<T>& lt)
		{
			_head = new node;
			_head->_next = _head;
			_head->_prev = _head;
			for (const auto& e : lt)
			{
				push_back(e);
			}
		}

		//copy = lt1;
		/*	list& operator=(const list& lt)
		{
		if (this != <)
		{
		clear();
		for (const auto& e : lt)
		{
		push_back(e);
		}
		}

		return *this;
		}*/

		// copy = lt1;
		list<T>& operator=(list<T> lt)
		{
			swap(_head, lt._head);

			return *this;
		}

		~list()
		{
			clear();
			delete _head;
			_head = nullptr;
		}

		void clear()
		{
			iterator it = begin();
			while (it != end())
			{
				//it = erase(it);
				erase(it++);
			}
		}

		void push_back(const T& x)
		{
			insert(end(), x);
		}

		void push_front(const T& x)
		{
			insert(begin(), x);
		}

		void pop_back()
		{
			erase(--end());
		}

		void pop_front()
		{
			erase(begin());
		}

		void insert(iterator pos, const T& x)
		{
			assert(pos._pnode);

			node* cur = pos._pnode;
			node* prev = cur->_prev;
			node* newnode = new node(x);

			// prev newnode cur
			prev->_next = newnode;
			newnode->_prev = prev;
			newnode->_next = cur;
			cur->_prev = newnode;
		}

		iterator erase(iterator pos)
		{
			assert(pos._pnode);
			assert(pos != end());

			node* prev = pos._pnode->_prev;
			node* next = pos._pnode->_next;

			delete pos._pnode;
			prev->_next = next;
			next->_prev = prev;

			return iterator(next);
		}

		bool empty()
		{
			return begin() == end()}

		size_t size()
		{
			size_t sz = 0;
			iterator it = begin();
			while (it != end())
			{
				++sz;
				++it;
			}

			return sz;
		}
	private:
		node* _head;
		//size_t _size;
	};

	void PrintList(const list<int>& lt)
	{
		list<int>::const_iterator it = lt.begin();
		while (it != lt.end())
		{
			// *it += 1; // ?
			cout << *it << " ";
			++it;
		}
		cout << endl;
	}

	class Date
	{
	public:
		int _year = 0;
		int _month = 1;
		int _day = 1;
	};

	void test_list1()
	{
		list<int> lt;
		lt.push_back(1);
		lt.push_back(2);
		lt.push_back(3);
		lt.push_back(4);

		list<int>::iterator it = lt.begin();
		while (it != lt.end())
		{
			*it += 1;
			cout << *it << " ";
			++it;
		}
		cout << endl;

		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;

		PrintList(lt);
	}

	void test_list2()
	{
		list<Date> lt;
		lt.push_back(Date());
		lt.push_back(Date());
		lt.push_back(Date());

		list<Date>::iterator it = lt.begin();
		while (it != lt.end())
		{
			//cout << (*it)._year << " " << (*it)._month <<" " <<(*it)._day<
			cout << it->_year << " " << it->_month << " " << it->_day << endl;

			++it;
		}
		cout << endl;

		Date d;
		Date* p = &d;

		(*p)._year = 100;
		p->_year = 100;
	}

	void test_list3()
	{
		list<int> lt;
		lt.push_back(1);
		lt.push_back(2);
		lt.push_back(3);
		lt.push_back(4);
		PrintList(lt);

		list<int> copy(lt);
		PrintList(copy);

		list<int> lt1;
		lt1.push_back(10);
		lt1.push_back(20);
		copy = lt1;
		PrintList(copy);
		PrintList(lt1);



		lt.clear();
		PrintList(lt);
	}
}

你可能感兴趣的:(C++,数据结构,c++,数据结构,红黑树,map,set)