个人昵称:lxw-pro
个人主页:欢迎关注 我的主页
个人感悟: “失败乃成功之母”,这是不变的道理,在失败中总结,在失败中成长,才能成为IT界的一代宗师。
import numpy as np # 导入Numpy库
x = np.array([3, 5])
y = np.array([6, 2])
# 列相乘
xc = np.multiply(x, y)
print(xc)
# 列乘后相加
qxc = np.dot(x, y)
print(qxc)
print(x.shape)
print(y.shape)
# 一维与二维相乘
x = np.array([2, 3, 4])
y = np.array([
[1, 2, 3],
[2, 3, 4]
])
print(x * y)
# 辨别x和y2是否一样
y2 = np.array([2, 4, 9])
print(x == y2)
# 与
yy = np.logical_and(x, y2)
print(yy)
# 或
hh = np.logical_or(x, y2)
print(hh)
# 非
ff = np.logical_not(x, y2)
print(ff)
[18 10]
28
(2,)
(2,)
[[ 2 6 12]
[ 4 9 16]]
[ True False False]
[ True True True]
[ True True True]
[0 0 0]
print()
sj = np.random.rand(2, 6) # 所有的值都是0从1
print(sj)
yx = np.random.randint(8, size=(5, 3)) # 返回的是随机的整数,左闭右开
print(yx)
# 随机数
s = np.random.rand()
print(s)
# 随机样本
yb = np.random.random_sample()
print(yb)
# 区间内的随机数
qjs = np.random.randint(0, 10, 6)
print(qjs)
# 高斯分布
mu, sigma = 0, 0.1
fb = np.random. normal(mu, sigma, 8)
print(fb)
# 指定精度
zd = np.set_printoptions(precision=3)
print(fb)
# 洗牌
xps = np.arange(10)
np.random.shuffle(xps)
print(xps)
# 随机的种子
np.random.seed(100)
mu, sigma = 0, 0.1
z = np.random.normal(mu, sigma, 8)
print(z)
[[0.63334441 0.85097104 0.59019264 0.310542 0.90493224 0.64755 ]
[0.26229661 0.22710308 0.8936011 0.42837496 0.06484865 0.01209753]]
[[3 5 4]
[6 4 0]
[5 3 5]
[4 2 7]
[2 0 3]]
0.5814122350900927
0.37162507133518075
[1 0 1 4 6 2]
[ 0.04351687 -0.02026214 0.02332794 -0.09842403 0.06876269 0.02239188
-0.06339656 0.11343825]
[ 0.044 -0.02 0.023 -0.098 0.069 0.022 -0.063 0.113]
[6 2 4 3 7 0 1 5 8 9]
[-0.175 0.034 0.115 -0.025 0.098 0.051 0.022 -0.107]
print()
data = []
with open('np2.txt') as f:
for line in f:
fil = line.split()
f_data = [float(i) for i in fil]
data.append(f_data)
data = np.array(data)
print(data)
# 法二--简便
# delimiter 分隔符 | skiprows=1 去掉几行 | usecols = (0, 1, 4) 指定使用哪几列
data = np.loadtxt('np2.txt', delimiter=' ', skiprows=1)
print(data)
[[1. 2. 3. 4. 5. 6.]
[4. 5. 6. 7. 8. 9.]]
[4. 5. 6. 7. 8. 9.]
print()
xr = np.array([
[1, 2, 3],
[6, 7, 8]
])
np.savetxt('np2_1.txt', xr)
np.savetxt('np2_2.txt', xr, fmt='%d')
np.savetxt('np2_3.txt', xr, fmt='%d', delimiter=',')
np.savetxt('np2_4.txt', xr, fmt='%.2f', delimiter=' ')
# 读写array结构
dx_array = np.array([
[5, 2, 0],
[1, 4, 9]
])
np.save('np2_1.npy', dx_array)
dx = np.load('np2_1.npy')
print(dx)
[[5 2 0]
[1 4 9]]
import numpy as np # 导入Numpy库
print(np.__version__)
ojz = np.zeros((5, 5))
print(ojz)
print("%d bytes" % (ojz.size*ojz.itemsize))
bz = help(np.info(np.add))
print(bz)
sz = np.arange(2, 21, 1)
print(sz)
sz = sz[::-1]
print(sz)
sy = np.nonzero([2, 53, 12, 43, 0, 0, 0, 23, 90])
print(sy)
1.22.3
[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]
200 bytes
add(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
Add arguments element-wise.
Parameters
----------
x1, x2 : array_like
The arrays to be added.
If ``x1.shape != x2.shape``, they must be broadcastable to a common
shape (which becomes the shape of the output).
out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.
where : array_like, optional
This condition is broadcast over the input. At locations where the
condition is True, the `out` array will be set to the ufunc result.
Elsewhere, the `out` array will retain its original value.
Note that if an uninitialized `out` array is created via the default
``out=None``, locations within it where the condition is False will
remain uninitialized.
**kwargs
For other keyword-only arguments, see the
:ref:`ufunc docs <ufuncs.kwargs>`.
Returns
-------
add : ndarray or scalar
The sum of `x1` and `x2`, element-wise.
This is a scalar if both `x1` and `x2` are scalars.
Notes
-----
Equivalent to `x1` + `x2` in terms of array broadcasting.
Examples
--------
>>> np.add(1.0, 4.0)
5.0
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.add(x1, x2)
array([[ 0., 2., 4.],
[ 3., 5., 7.],
[ 6., 8., 10.]])
The ``+`` operator can be used as a shorthand for ``np.add`` on ndarrays.
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> x1 + x2
array([[ 0., 2., 4.],
[ 3., 5., 7.],
[ 6., 8., 10.]])
Help on NoneType object:
class NoneType(object)
| Methods defined here:
|
| __bool__(self, /)
| self != 0
|
| __repr__(self, /)
| Return repr(self).
|
| ----------------------------------------------------------------------
| Static methods defined here:
|
| __new__(*args, **kwargs) from builtins.type
| Create and return a new object. See help(type) for accurate signature.
None
[ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]
[20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2]
(array([0, 1, 2, 3, 7, 8], dtype=int32),)
zz = np.random.random((3, 3))
print(zz.max())
print(zz.min())
jz = np.ones((5, 5))
jz = np.pad(jz, pad_width=1, mode='constant', constant_values=0)
print(jz)
print(help(np.pad)) # 帮助文档
sy8 = np.unravel_index(100, (6, 7, 8))
print(sy8)
cz = np.random.random((5, 5))
cz_max = cz.max()
cz_min = cz.min()
cz = (cz-cz_min)/(cz_max-cz_min)
print(cz)
sz1 = np.random.randint(0, 20, 8)
sz2 = np.random.randint(0, 20, 8)
print(sz1)
print(sz2)
print(np.intersect1d(sz1, sz2))
0.9786237847073697
0.10837689046425514
[[0. 0. 0. 0. 0. 0. 0.]
[0. 1. 1. 1. 1. 1. 0.]
[0. 1. 1. 1. 1. 1. 0.]
[0. 1. 1. 1. 1. 1. 0.]
[0. 1. 1. 1. 1. 1. 0.]
[0. 1. 1. 1. 1. 1. 0.]
[0. 0. 0. 0. 0. 0. 0.]]
Help on function pad in module numpy:
pad(array, pad_width, mode='constant', **kwargs)
Pad an array.
Parameters
----------
array : array_like of rank N
The array to pad.
pad_width : {sequence, array_like, int}
Number of values padded to the edges of each axis.
((before_1, after_1), ... (before_N, after_N)) unique pad widths
for each axis.
((before, after),) yields same before and after pad for each axis.
(pad,) or int is a shortcut for before = after = pad width for all
axes.
mode : str or function, optional
One of the following string values or a user supplied function.
'constant' (default)
Pads with a constant value.
'edge'
Pads with the edge values of array.
'linear_ramp'
Pads with the linear ramp between end_value and the
array edge value.
'maximum'
Pads with the maximum value of all or part of the
vector along each axis.
'mean'
Pads with the mean value of all or part of the
vector along each axis.
'median'
Pads with the median value of all or part of the
vector along each axis.
'minimum'
Pads with the minimum value of all or part of the
vector along each axis.
'reflect'
Pads with the reflection of the vector mirrored on
the first and last values of the vector along each
axis.
'symmetric'
Pads with the reflection of the vector mirrored
along the edge of the array.
'wrap'
Pads with the wrap of the vector along the axis.
The first values are used to pad the end and the
end values are used to pad the beginning.
'empty'
Pads with undefined values.
.. versionadded:: 1.17
<function>
Padding function, see Notes.
stat_length : sequence or int, optional
Used in 'maximum', 'mean', 'median', and 'minimum'. Number of
values at edge of each axis used to calculate the statistic value.
((before_1, after_1), ... (before_N, after_N)) unique statistic
lengths for each axis.
((before, after),) yields same before and after statistic lengths
for each axis.
(stat_length,) or int is a shortcut for before = after = statistic
length for all axes.
Default is ``None``, to use the entire axis.
constant_values : sequence or scalar, optional
Used in 'constant'. The values to set the padded values for each
axis.
``((before_1, after_1), ... (before_N, after_N))`` unique pad constants
for each axis.
``((before, after),)`` yields same before and after constants for each
axis.
``(constant,)`` or ``constant`` is a shortcut for ``before = after = constant`` for
all axes.
Default is 0.
end_values : sequence or scalar, optional
Used in 'linear_ramp'. The values used for the ending value of the
linear_ramp and that will form the edge of the padded array.
``((before_1, after_1), ... (before_N, after_N))`` unique end values
for each axis.
``((before, after),)`` yields same before and after end values for each
axis.
``(constant,)`` or ``constant`` is a shortcut for ``before = after = constant`` for
all axes.
Default is 0.
reflect_type : {'even', 'odd'}, optional
Used in 'reflect', and 'symmetric'. The 'even' style is the
default with an unaltered reflection around the edge value. For
the 'odd' style, the extended part of the array is created by
subtracting the reflected values from two times the edge value.
Returns
-------
pad : ndarray
Padded array of rank equal to `array` with shape increased
according to `pad_width`.
Notes
-----
.. versionadded:: 1.7.0
For an array with rank greater than 1, some of the padding of later
axes is calculated from padding of previous axes. This is easiest to
think about with a rank 2 array where the corners of the padded array
are calculated by using padded values from the first axis.
The padding function, if used, should modify a rank 1 array in-place. It
has the following signature::
padding_func(vector, iaxis_pad_width, iaxis, kwargs)
where
vector : ndarray
A rank 1 array already padded with zeros. Padded values are
vector[:iaxis_pad_width[0]] and vector[-iaxis_pad_width[1]:].
iaxis_pad_width : tuple
A 2-tuple of ints, iaxis_pad_width[0] represents the number of
values padded at the beginning of vector where
iaxis_pad_width[1] represents the number of values padded at
the end of vector.
iaxis : int
The axis currently being calculated.
kwargs : dict
Any keyword arguments the function requires.
Examples
--------
>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2, 3), 'constant', constant_values=(4, 6))
array([4, 4, 1, ..., 6, 6, 6])
>>> np.pad(a, (2, 3), 'edge')
array([1, 1, 1, ..., 5, 5, 5])
>>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4])
>>> np.pad(a, (2,), 'maximum')
array([5, 5, 1, 2, 3, 4, 5, 5, 5])
>>> np.pad(a, (2,), 'mean')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])
>>> np.pad(a, (2,), 'median')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])
>>> a = [[1, 2], [3, 4]]
>>> np.pad(a, ((3, 2), (2, 3)), 'minimum')
array([[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[3, 3, 3, 4, 3, 3, 3],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1]])
>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2, 3), 'reflect')
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])
>>> np.pad(a, (2, 3), 'reflect', reflect_type='odd')
array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8])
>>> np.pad(a, (2, 3), 'symmetric')
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])
>>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd')
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])
>>> np.pad(a, (2, 3), 'wrap')
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])
>>> def pad_with(vector, pad_width, iaxis, kwargs):
... pad_value = kwargs.get('padder', 10)
... vector[:pad_width[0]] = pad_value
... vector[-pad_width[1]:] = pad_value
>>> a = np.arange(6)
>>> a = a.reshape((2, 3))
>>> np.pad(a, 2, pad_with)
array([[10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10],
[10, 10, 0, 1, 2, 10, 10],
[10, 10, 3, 4, 5, 10, 10],
[10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10]])
>>> np.pad(a, 2, pad_with, padder=100)
array([[100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100],
[100, 100, 0, 1, 2, 100, 100],
[100, 100, 3, 4, 5, 100, 100],
[100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100]])
None
(1, 5, 4)
[[0.275 0.437 0.958 0.833 0.339]
[0.174 0.376 0. 0.253 0.81 ]
[0.01 0.608 0.613 0.102 0.386]
[0.032 0.907 1. 0.056 0.907]
[0.586 0.756 0.64 0.591 0.015]]
[19 14 0 13 12 10 3 6]
[ 3 15 10 15 3 9 16 11]
[ 3 10]
yes = np.datetime64('today', 'D') - np.timedelta64(1, 'D')
tod = np.datetime64('today', 'D')
tom = np.datetime64('today', 'D') + np.timedelta64(1, 'D')
print(f"昨天是{yes}")
print(f"今天是{tod}")
print(f"明天是{tom}")
tt = np.arange('2022-08', '2022-09', dtype='datetime64[D]')
print(tt)
xs = np.random.uniform(0, 20, 8)
print(xs)
print(np.floor(xs))
# zz = np.zeros(5)
# zz.flags.writeable = False
# zz[0] = 2
# print(zz[0])
np.set_printoptions(threshold=5)
bq = np.zeros((20, 20))
print(bq)
昨天是2022-08-29
今天是2022-08-30
明天是2022-08-31
['2022-08-01' '2022-08-02' '2022-08-03' '2022-08-04' '2022-08-05'
'2022-08-06' '2022-08-07' '2022-08-08' '2022-08-09' '2022-08-10'
'2022-08-11' '2022-08-12' '2022-08-13' '2022-08-14' '2022-08-15'
'2022-08-16' '2022-08-17' '2022-08-18' '2022-08-19' '2022-08-20'
'2022-08-21' '2022-08-22' '2022-08-23' '2022-08-24' '2022-08-25'
'2022-08-26' '2022-08-27' '2022-08-28' '2022-08-29' '2022-08-30'
'2022-08-31']
[16.229 12.806 12.496 2.91 11.404 1.302 6.268 4.341]
[16. 12. 12. 2. 11. 1. 6. 4.]
[[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
...
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]]
zd = np.arange(100)
vv = np.random.uniform(0, 100)
print(vv)
index = (np.abs(zd-vv)).argmin()
print(zd[index])
lx = np.arange(10, dtype=np.int32)
print(lx.dtype)
lx = lx.astype(np.float32)
print(lx.dtype)
dy = np.arange(12).reshape(3, 4)
for i, val in np.ndenumerate(dy):
print(i, val)
px = np.random.randint(0, 10, (3, 3))
print(px)
print(px[px[:, 0].argsort()])
cs = np.array([3, 5, 23, 5, 2, 5, 6, 7, 2, 3, 5])
print(np.bincount(cs))
52.69503887473037
53
int32
float32
(0, 0) 0
(0, 1) 1
(0, 2) 2
(0, 3) 3
(1, 0) 4
(1, 1) 5
(1, 2) 6
(1, 3) 7
(2, 0) 8
(2, 1) 9
(2, 2) 10
(2, 3) 11
[[6 0 7]
[2 3 5]
[4 2 4]]
[[2 3 5]
[4 2 4]
[6 0 7]]
[0 0 2 ... 0 0 1]
szzz = np.random.randint(0, 10, [4, 4, 4, 4])
qh = szzz.sum(axis=(-2, -1))
print(qh)
sz = np.arange(16).reshape(4, 4)
sz[[0, 1]] = sz[[1, 0]]
print(sz)
sz = np.random.randint(0, 20, 20)
print(np.bincount(sz).argmax())
sz = np.arange(1000)
np.random.shuffle(sz)
x = 66
print(sz[np.argpartition(-sz, x)[:x]])
np.set_printoptions(threshold=6)
sz = np.random.randint(0, 5, (10, 3))
print(sz)
sj = np.all(sz[:, 1:] == sz[:, :-1], axis=1)
print(sj)
sj2 = np.any(sz[:, 1:] == sz[:, :-1], axis=1)
print(sj2)
[[81 81 71 54]
[78 60 38 63]
[63 81 74 80]
[67 58 69 76]]
[[ 4 5 6 7]
[ 0 1 2 3]
[ 8 9 10 11]
[12 13 14 15]]
3
[982 977 979 ... 948 952 934]
[[4 3 3]
[0 3 1]
[1 4 1]
...
[0 2 0]
[0 0 1]
[0 4 3]]
[False False False ... False False False]
[ True False False ... False True False]
————————————————————————————————————————————————————————
成年人最好的自律是及时止损,人都有执念,但不能执迷不悟!
点赞,你的认可是我创作的
动力
!
收藏,你的青睐是我努力的方向
!
评论,你的意见是我进步的财富
!
关注,你的喜欢是我长久的坚持
!
欢迎关注微信公众号【程序人生6】,一起探讨学习哦!!!