大地坐标系统漫谈

 

1、椭球体

GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定。

基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的基准面。基准面是在椭球体基础上建立的,椭球体可以对应多个基准面,而基准面只能对应一个椭球体。大地坐标系统漫谈大地坐标系统漫谈

椭球体的几何定义:

O是椭球中心,NS为旋转轴,a为长半轴,b为短半轴。

子午圈:包含旋转轴的平面与椭球面相截所得的椭圆。

纬圈:垂直于旋转轴的平面与椭球面相截所得的圆,也叫平行圈。

赤道:通过椭球中心的平行圈。

基本几何参数:大地坐标系统漫谈

椭圆的扁率: 

椭圆的第一偏心率  :

椭圆的第二偏心率 : 

其中ab称为长度元素;扁率α反映了椭球体的扁平程度。偏心率ee’是子午椭圆的焦点离开中心的距离与椭圆半径之比,它们也反映椭球体的扁平程度,偏心率愈大,椭球越扁。

套用不同的椭球体,同一个地点会测量到不同的经纬度。下面是几种常见的椭球体及参数列表。

几种常见的椭球体参数值

克拉索夫斯基椭球体

1975年国际椭球体

WGS-84椭球体

a

6 378 245.000 000 000 0m

6 378 140.000 000 000 0m

6 378 137.000 000 000 0m

b

6 356 863.018 773 047 3m

6 356 755.288 157 528 7m

6 356 752.314 2m

c

6 399 698.901 782 711 0m

6 399 596.651 988 010 5m

6 399 593.625 8m

α

1298.3

1298.257

1/298.257 223 563

e2

0.006 693 421 622 966

0.006 694 384 999 588

0.006 694 379 901 3

e’2

0.006 738 525 414 683

0.006 739 501 819 473

0.006 739 496 742 27

2、地图投影

地球是一个球体,球面上的位置,是以经纬度来表示,我们把它称为球面坐标系統地理坐标系統。在球面上计算角度距离十分麻烦,而且地图是印刷在平面纸张上,要将球面上的物体画到紙上,就必须展平,这种将球面转化为平面的过程,称为投影

经由投影的过程,把球面坐标换算为平面直角坐标,便于印刷与计算角度与距离。由于球面無法百分之百展为平面而不变形,所以除了地球仪外,所有地图都有某些程度的变形,有些可保持面积不变,有些可保持方位不变,视其用途而定。

目前国际间普遍采用的一种投影,是即横轴墨卡托投影(Transverse Mecator Projection),又称为高斯-克吕格投影(Gauss-Kruger Projection),在小范围内保持形状不变,对于各种应用较为方便。我们可以想象成将一个圆柱体橫躺,套在地球外面,再将地表投影到这个圆柱上,然后将圆柱体展开成平面。圆柱与地球沿南北经线方向相切,我们将这条切线称为中央经线

大地坐标系统漫谈
在中央经线上,投影面与地球完全密合,因此图形没有变形;由中央经线往東西两侧延伸,地表图形会被逐渐放大,变形也会越来越严重。

为了保持投影精度在可接受范围内,每次只能取中央经线两侧附近地区来用,因此必须切割为许多投影带。就像将地球沿南北子午线方向,如切西瓜一般,切割为若干带状,再展成平面。目前世界各国军用地图所采用之 UTM 坐标系統 (Universal Transverse Mecator Projection System),即为横轴投影的一种。是将地球沿子午线方向,每隔 6 度切割为一带,全球共切割为 60 个投影带。

大地坐标系统漫谈    
地图投影几何分类主要包括:

    大地坐标系统漫谈
结合变形性质和几何投影,投影分类包括:

大地坐标系统漫谈
3
GIS中地图投影的定义

我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger);小于50万的地形图采用正轴等角割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用正轴等角园柱投影,又叫墨卡托投影(Mercator),我国的GIS系统中应该采用与我国基本比例尺地形图系列一致的地图投影系统。

相应高斯-克吕格投影、兰勃特投影、墨卡托投影需要定义的坐标系参数序列如下:

高斯-克吕格:投影代号(Type),基准面(Datum),单位(Unit)中央经度(OriginLongitude),原点纬度(OriginLatitude)比例系数(ScaleFactor)东伪偏移(FalseEasting),北纬偏移(FalseNorthing)

兰勃特:投影代号(Type),基准面(Datum),单位(Unit),中央经度(OriginLongitude),原点纬度(OriginLatitude)标准纬度1(StandardParallelOne),标准纬度2(StandardParallelTwo)东伪偏移(FalseEasting),北纬偏移(FalseNorthing)

墨卡托:投影代号(Type),基准面(Datum),单位(Unit)原点经度(OriginLongitude),原点纬度(OriginLatitude)标准纬度(StandardParallelOne)

在城市GIS系统中均采用6度或3度分带的高斯-克吕格投影,因为一般城建坐标采用的是6度或3度分带的高斯-克吕格投影坐标。高斯-克吕格投影以6度或3度分带,每一个分带构成一个独立的平面直角坐标网,投影带中央经线投影后的直线为X轴(纵轴,纬度方向),赤道投影后为Y轴(横轴,经度方向),为了防止经度方向的坐标出现负值,规定每带的中央经线西移500公里,即东伪偏移值为500公里,由于高斯-克吕格投影每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,因此规定在横轴坐标前加上带号,如(4231898,21655933)其中21即为带号,同样所定义的东伪偏移值也需要加上带号,如21带的东伪偏移值为21500000米。

假如你的工作区位于21带,即经度在120度至126度范围,该带的中央经度为123度,采用Pulkovo 1942基准面,那么定义6度分带的高斯-克吕格投影坐标系参数为:(81001712301215000000)

4、大地坐标系

有了椭球体以及地图投影,坐标系就能确定下来了。北京54和西安80是我们使用最多的坐标系。我们通常称谓的北京54坐标系、西安80坐标系实际上使用的是我国的两个大地基准面北京54基准面和西安80基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的1975地球椭球体建立了我国新的大地坐标系——西安80坐标系,目前大地测量基本上仍以北京54坐标系作为参照,北京54与西安80坐标之间的转换可查阅国家测绘局公布的对照表。 WGS84坐标系采用WGS1984基准面及WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心,目前GPS测量数据多以WGS1984为基准。

北京54坐标系

北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以格拉索夫斯基椭球为基础,经局部平差后产生的坐标系,与苏联1942年建立的以普尔科夫天文台为原点的大地坐标系统相联系,相应的椭球为克拉索夫斯基椭球。到20世纪80年代初,我国已基本完成了天文大地测量,经计算表明,54坐标系统普遍低于我国的大地水准面,平均误差为29米左右。

西安80坐标系

西安80是为了进行全国天文大地网整体平差而建立的。根据椭球定位的基本原理,在建立西安80坐标系时有以下先决条件:

1)大地原点在我国中部,具体地点是陕西省径阳县永乐镇;

2)西安80坐标系是参心坐标系,椭球短轴Z轴平行于地球质心指向地极原点方向,大地起始子午面平行于格林尼治平均天文台子午面;X轴在大地起始子午面内与 Z轴垂直指向经度 0方向;Y轴与 ZX轴成右手坐标系;

3)椭球参数采用IUG 1975年大会推荐的参数,因而可得西安80椭球两个最常用的几何参数为:

长轴:6378140±5m);

扁率:1298.257
椭球定位时按我国范围内高程异常值平方和最小为原则求解参数。

4)多点定位;
5)大地高程以1956年青岛验潮站求出的黄海平均水面为基准。

WGS84坐标系

大地坐标系统漫谈
WGS
84World Geodetic System1984年)是美国国防部研制确定的大地坐标系,其坐标系的几何定义是:原点在地球质心,z轴指向 BIH 1984.0定义的协议地球极(CTP)方向,X轴指向 BIH 1984.0 的零子午面和 CTP赤道的交点。Y轴与 ZX轴构成右手坐标系(如图所示)。

WGs-84椭球及有关常数:

对应于 WGS-8大地坐标系有一个WGS-84椭球,其常数采用 IUGG 17届大会大地测量常数的推荐值。

WGS-84椭球的几何常数:

长半轴: 6378137± 2m

扁率:1 / 298.257223563

地球引力常数(含大气层)GM3986005

正常化二阶带谐系数C2.0 -484.16685×10-6

地球自转角速度w= 7292115×10-11 rads -1

主要几何和物理常数

短半径b= 6356752.3142

扁率f=1/298.257223563

第一偏心率平方 e2 0.00669437999013

第二偏心率平方 e’2 0.006739496742227

橢球正常重力位 U0 62636860.8497m2s-2

赤道正常重力0 9.9703267714ms-2

地理坐标:为球面坐标。参考平面地是椭球面。坐标单位:经纬度

大地坐标:为平面坐标。参考平面地是水平面  坐标单位:米、千米等。

地理坐标转换到大地坐标的过程可理解为投影。(投影:将不规则的地球曲面转换为平面)

ArcGIS中预定义了两套坐标系:地理坐标系(Geographic coordinate system)投影坐标系(Projected coordinate system),

1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographic coordinate system是球面坐标系统。我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短半轴,偏心率。以下几行便是Krasovsky_1940椭球及其相应参数。
Spheroid: Krasovsky_1940
Semimajor Axis: 6378245.000000000000000000
Semiminor Axis: 6356863.018773047300000000
Inverse Flattening
(扁率): 298.300000000000010000
然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。在坐标系统描述中,可以看到有这么一行:
Datum: D_Beijing_1954
表示,大地基准面是D_Beijing_1954
有了SpheroidDatum两个基本条件,地理坐标系统便可以使用。
完整参数:
Alias:
Abbreviation:
Remarks:
Angular Unit: Degree (0.017453292519943299)
Prime Meridian
(起始经度): Greenwich (0.000000000000000000)
Datum
(大地基准面): D_Beijing_1954
Spheroid
(参考椭球体): Krasovsky_1940
Semimajor Axis: 6378245.000000000000000000
Semiminor Axis: 6356863.018773047300000000
Inverse Flattening: 298.300000000000010000


2
、接下来便是Projection coordinate system(投影坐标系统),首先看看投影坐标系统中的一些参数。
Projection: Gauss_Kruger
Parameters:
False_Easting: 500000.000000
False_Northing: 0.000000
Central_Meridian: 117.000000
Scale_Factor: 1.000000
Latitude_Of_Origin: 0.000000
Linear Unit: Meter (1.000000)
Geographic Coordinate System:
Name: GCS_Beijing_1954
Alias:
Abbreviation:
Remarks:
Angular Unit: Degree (0.017453292519943299)
Prime Meridian: Greenwich (0.000000000000000000)
Datum: D_Beijing_1954
Spheroid: Krasovsky_1940
Semimajor Axis: 6378245.000000000000000000
Semiminor Axis: 6356863.018773047300000000
Inverse Flattening: 298.300000000000010000
从参数中可以看出,每一个投影坐标系统都必定会有Geographic Coordinate System。投影坐标系统,实质上便是平面坐标系统,其地图单位通常为米。那么为什么投影坐标系统中要存在坐标系统的参数呢?这时候,又要说明一下投影的意义:将球面坐标转化为平面坐标的过程便称为投影。好了,投影的条件就出来了:
a
、球面坐标
b
、转化过程(也就是算法)
也就是说,要得到投影坐标就必须得有一个拿来投影的球面坐标,然后才能使用算法去投影!即每一个投影坐标系统都必须要求有Geographic Coordinate System参数。关于北京54和西安80是我们使用最多的坐标系。
    
先简单介绍高斯-克吕格投影的基本知识,了解就直接跳过,我国大中比例尺地图均采用高斯-克吕格投影,其通常是按6度和3度分带投影,1:2.5万-1:50万比例尺地形图采用经差6度分带,1:1万比例尺的地形图采用经差3度分带。具体分带法是:6度分带从本初子午线开始,按经差6度为一个投影带自西向东划分,全球共分60个投影带,带号分别为1603度投影带是从东经130秒经线开始,按经差3度为一个投影带自西向东划分,全球共分120个投影带。为了便于地形图的测量作业,在高斯-克吕格投影带内布置了平面直角坐标系统,具体方法是,规定中央经线为X轴,赤道为Y轴,中央经线与赤道交点为坐标原点,x值在北半球为正,南半球为负,y值在中央经线以东为正,中央经线以西为负。由于我国疆域均在北半球,x值均为正值,为了避免y值出现负值,规定各投影带的坐标纵轴均西移500km,中央经线上原横坐标值由0变为500km。为了方便带间点位的区分,可以在每个点位横坐标y值的百千米位数前加上所在带号,如20带内A点的坐标可以表示为YA=20 745 921.8m

Coordinate Systems"Projected Coordinate Systems"Gauss Kruger"Beijing 1954目录中,我们可以看到四种不同的命名方式:

Beijing 1954 3 Degree GK CM 75E.prj
    Beijing 1954 3 Degree GK Zone 25.prj
    Beijing 1954 GK Zone 13.prj
    Beijing 1954 GK Zone 13N.prj

对它们的说明分别如下:

 三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前不加带号
   
三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前加带号
   
六度分带法的北京54坐标系,分带号为13,横坐标前加带号
   
六度分带法的北京54坐标系,分带号为13,横坐标前不加带号

Coordinate Systems"Projected Coordinate Systems"Gauss Kruger"Xian 1980目录中,文件命名方式又有所变化:

Xian 1980 3 Degree GK CM 75E.prj
    Xian 1980 3 Degree GK Zone 25.prj
    Xian 1980 GK CM 75E.prj
    Xian 1980 GK Zone 13.prj

西安80坐标文件的命名方式、含义和北京54前两个坐标相同,但没有出现带号+N”这种形式,为什么没有采用统一的命名方式?让人看了有些费解。
     
大地坐标(Geodetic Coordinate:大地测量中以参考椭球面为基准面的坐标。地面点P的位置用大地经度L、大地纬度B和大地高H表示。当点在参考椭球面上时,仅用大地经度和大地纬度表示。大地经度是通过该点的大地子午面与起始大地子午面之间的夹角,大地纬度是通过该点的法线与赤道面的夹角,大地高是地面点沿法线到参考椭球面的距离。
    
方里网:是由平行于投影坐标轴的两组平行线所构成的方格网。因为是每隔整公里绘出坐标纵线和坐标横线,所以称之为方里网,由于方里线同时又是平行于直角坐标轴的坐标网线,故又称直角坐标网。
   
11——120万比例尺的地形图上,经纬线只以图廓线的形式直接表现出来,并在图角处注出相应度数。为了在用图时加密成网,在内外图廓间还绘有加密经纬网的加密分划短线(图式中称分度带”),必要时对应短线相连就可以构成加密的经纬线网。12 5万地形图上,除内图廓上绘有经纬网的加密分划外,图内还有加密用的十字线。
   
我国的150——1100万地形图,在图面上直接绘出经纬线网,内图廓上也有供加密经纬线网的加密分划短线。直角坐标网的坐标系以中央经线投影后的直线为X轴,以赤道投影后的直线为Y轴,它们的交点为坐标原点。这样,坐标系中就出现了四个象限。纵坐标从赤道算起向北为正、向南为负;横坐标从中央经线算起,向东为正、向西为负。
     
虽然我们可以认为方里网是直角坐标,大地坐标就是球面坐标。但是我们在一副地形图上经常见到方里网和经纬度网,我们很习惯的称经纬度网为大地坐标,这个时候的大地坐标不是球面坐标,它与方里网的投影是一样的(一般为高斯投影),也是平面坐标。

你可能感兴趣的:(系统)