- 《自然语言处理实战入门》深度学习 ---- 预训练模型初探
shiter
AI重制版】预训练NLP自然语言处理
文章大纲前言预训练模型简介语言表示学习神经上下文编码器为何需要预训练模型发展历史主流预训练模型预训练模型与分类将PTMs应用至下游任务微调策略未来研究方向参考文献前言随着深度学习的发展,各种神经网络被广泛用于解决自然语言处理(NLP)任务,如卷积神经网络(convolutionalneuralnetworks,CNNs)、递归神经网络(neuralnetworks,RNNs)、基于图的神经网络(g
- DeepSeek发展背景和前景
爱吃苹果的日记本
人工智能
1.成立背景:它的背景是由杭州深度求索人工智能基础技术研究有限公司开发,该公司成立于2023年7月17日,由量化资管巨头幻方量化创立。幻方量化在AI量化对冲基金领域具有深厚的技术积累和资金支持,这为DeepSeek的研发奠定了坚实的基础。2.技术演进:2024年1月:发布首个大模型DeepSeekLLM,包含670亿参数,在2万亿token的数据集上训练,性能超越Llama270BBase。202
- 第20周:Pytorch文本分类入门
weixin_46620278
pytorch分类人工智能
目录前言一、前期准备1.1环境安装导入包1.2加载数据1.3构建词典1.4生成数据批次和迭代器二、准备模型2.1定义模型2.2定义示例2.3定义训练函数与评估函数三、训练模型3.1拆分数据集并运行模型3.2使用测试数据集评估模型总结前言本文为[365天深度学习训练营]中的学习记录博客原作者:[K同学啊]说在前面本周任务:了解文本分类的基本流程、学习常用数据清洗方法、学习如何使用jieba实现英文分
- NLP新手入门-第N1周:Pytorch文本分类入门
Oaix Nay
365天深度学习训练记录pytorch自然语言处理分类
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊|接辅导、项目定制目录一、课题背景和开发环境二、环境安装三、文本分类1.加载数据2.构建词典3.生成数据批次和迭代器4.定义模型5.定义实例6.定义训练函数与评估函数7.拆分数据集并运行模型8.使用测试数据集评估模型一、课题背景和开发环境第N1周:Pytorch文本分类入门Python3.8.12pytorch==1.8.1+cu111t
- 28.代码随想录算法训练营第二十八天|122. 买卖股票的最佳时机 II,55. 跳跃游戏,45. 跳跃游戏 II,1005. K 次取反后最大化的数组和
白鹭鸣鸣!
算法java
28.代码随想录算法训练营第二十八天|122.买卖股票的最佳时机II,55.跳跃游戏,45.跳跃游戏II,1005.K次取反后最大化的数组和122.买卖股票的最佳时机II-力扣(LeetCode)给你一个整数数组prices,其中prices[i]表示某支股票第i天的价格。在每一天,你可以决定是否购买和/或出售股票。你在任何时候最多只能持有一股股票。你也可以先购买,然后在同一天出售。返回你能获得的
- Python 在深度学习中的应用
2501_90435375
人工智能python深度学习开发语言
深度学习是机器学习的一个分支,它通过构建和训练深层神经网络来实现对数据的学习和理解。Python作为一种简洁、易读、功能强大的编程语言,在深度学习领域得到了广泛的应用。本文将详细介绍Python在深度学习中的应用,包括深度学习的基础概念、Python深度学习库和框架、实际案例。二、深度学习的基础概念1.神经网络神经网络是深度学习的基础,它由多个神经元组成,每个神经元接收输入信号,进行加权求和,并通
- Bert的使用
巨鹿..
深度学习记录bert人工智能深度学习
一、Data.py#data负责产生两个dataloaderfromtorch.utils.dataimportDataLoader,Datasetfromsklearn.model_selectionimporttrain_test_split#给X,Y和分割比例,分割出来一个训练集和验证机的X,Yimporttorchdefread_file(path):data=[]label=[]with
- PyTorch 中的混合精度训练方法,从 autocast 到 GradScalar
Syntax_CD
PyTorch必知必会pytorch人工智能python
PyTorch的混合精度训练主要由两个方法实现:amp.autocast和amp.GradScalar。在这两个工具的帮助下,可以实现以torch.float16的混合精度训练。当然,这两个方法都是模块化并且通常都会一起调用,但并不一定总是需要一起使用。参考:AutomaticMixedPrecisionpackage-torch.ampAutomaticMixedPrecisionexample
- 考研复习时间规划:从迷茫到高效备考的进阶之路
闲虎考研
考研经验考研
考研复习是一场持久战,科学的复习规划是成功的关键。对于大多数考生而言,复习时间通常在6-12个月之间,如何在这段时间内实现高效备考,需要建立在对自身情况和考研规律的深刻认知之上。一、考研复习的时间特征考研复习具有明显的阶段性特征。基础阶段需要全面梳理知识体系,强化阶段着重攻克重点难点,冲刺阶段则要进行查漏补缺和模拟训练。每个阶段都有其特定的任务和目标,考生需要根据这些特征合理安排时间。考研复习的时
- 模型优化前沿趋势与行业应用实战
智能计算研究中心
其他
内容概要模型优化技术正经历从理论研究到产业落地的关键跃迁。随着自动化机器学习(AutoML)与边缘计算技术的深度融合,模型开发范式正从人工调参转向自动化、自适应优化。以联邦学习为代表的数据隐私保护技术,正在重构跨机构协作的模型训练范式,而量子计算与神经架构搜索(NAS)的结合,为超参数优化开辟了新维度。在应用层面,医疗影像识别准确率突破99%的突破性成果,验证了迁移学习在跨领域知识迁移中的巨大潜力
- 算力安全创新驱动未来趋势endofsentence
智能计算研究中心
其他
内容概要算力安全与技术创新正在重塑全球算力生态,其核心驱动力来自异构计算、边缘计算及量子计算等前沿技术的深度融合。当前算力架构正经历从集中式向分布式演进,通过异构加速芯片、动态资源调度算法及绿色能效优化,显著提升算力基础设施的可扩展性与可靠性。例如,异构计算通过CPU、GPU、FPGA的协同加速,使复杂模型训练效率提升40%以上。关键数据:根据IDC预测,到2025年全球智能算力需求将增长30倍,
- H800实战应用深度解析endofsentence
智能计算研究中心
其他
内容概要H800作为新一代计算架构的核心组件,其设计理念聚焦于高性能计算与人工智能场景的深度融合。通过模块化异构计算架构,H800实现了计算密度与能效比的突破性提升。下表展示了H800在不同场景下的性能表现对比:场景类型训练速度提升推理延迟降低能效比提升自然语言处理35%22%40%计算机视觉28%18%33%推荐系统41%29%37%资深系统架构师指出:"H800的异构计算架构在模型并行处理方面
- DeepSeek高效AI创作成本革新endofsentence
智能计算研究中心
其他
内容概要DeepSeek作为新一代智能创作平台,其核心技术突破体现在混合专家架构(MoE)与670亿参数的深度融合。该系统通过多任务联合训练框架,在自然语言理解、代码生成和跨模态处理方面展现出显著优势。其混合专家架构采用动态路由机制,实现参数利用率提升40%以上,在保持模型容量的同时将推理成本降低68%。在代码生成任务中,DeepSeekCoder在HumanEval基准测试中达到83.1%的准确
- DeepSeek大语言模型下几个常用术语
曲幽
AI计算机语言模型人工智能自然语言处理deepseekollamaai
昨天刷B站看到复旦赵斌老师说的一句话“科幻电影里在人脑中植入芯片或许在当下无法实现,但当下可以借助AI人工智能实现人类第二脑”(大概是这个意思)更多内容,可关注公众号“一名程序媛”,我们一起从0-1学编程基本概念AI人工智能NLP自然语言处理LLM大语言模型HuggingFace一个提供了丰富的预训练模型和工具库的平台网站Ollama开源的本地大语言模型运行框架,用来在本地部署调用大语言模型,如D
- Python机器学习实战:使用Flask构建机器学习API
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
Python机器学习实战:使用Flask构建机器学习API作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在数据科学和机器学习领域,模型训练和部署一直是重要的挑战。传统的机器学习项目往往采用独立的脚本或复杂的流程,难以实现模型的自动化、可视化和复现。为了解决这一问题,将机器学习模型封装成可访问的API变得越来越流行。Fla
- 入坑 Python 全能实战小白训练营,470 集干货 12.9G 大揭秘!
七七知享
Pythonpython开发语言pandasnumpymatplotlibjavaphp
家人们,我最近挖到了一个Python学习的宝藏——Python全能实战小白训练营。整整470集,内容超丰富,资源包有12.9G,完全就是为咱们这些想系统学习Python的小白量身定制的。接下来就给大家好好唠唠。随着课程深入,会涉及到Python的各种高级特性,比如面向对象编程、模块与包的使用。在讲面向对象编程时,老师通过打造一个小型游戏角色系统,把类、对象、继承、多态这些抽象概念诠释得生动形象,让
- 深度学习训练中GPU内存管理
@Mr_LiuYang
遇到过的问题内存管理内存溢出outofmemoryGPU内存
文章目录概述常见问题1、设备选择和数据迁移2、显存监控函数3、显存释放函数4、自适应batchsize调节5、梯度累积概述在深度学习模型训练中,主流GPU显存通常为8GB~80GB,内存不足会导致训练中断或BatchSize受限,GPU内存管理是优化性能和避免OutOfMemoryError的关键挑战。本博客简介PyTorch中GPU内存管理的核心函数、用法和实战技巧,帮助开发者高效利用显存资源。
- 一学就会的深度学习基础指令及操作步骤(5)使用预训练模型
小圆圆666
深度学习人工智能python卷积神经网络
文章目录使用预训练模型加载预训练模型图像加载与预处理预测使用预训练模型查看模型库和常用模型加载预训练模型fromtorchvision.modelsimportvgg16#VGG16模型架构的定义fromtorchvision.modelsimportVGG16_Weights#VGG16的预训练权重配置#loadtheVGG16network*pre-trained*ontheImageNetd
- 【LLM】预训练的具体流程
FOUR_A
LLMpython人工智能深度学习大模型
分词器训练预训练模型:就像你已经学会了一些基础知识的“大脑”,我们可以在这个基础上继续学习新东西。比如,有些模型已经学会了英语,但中文学得不够好。中文预训练:为了让这个“大脑”更好地理解中文,我们需要用大量的中文数据继续训练它。分词器(Tokenizer):它的作用是把一句话拆分成一个个小单元(比如词语或字)。比如,“我喜欢学习”会被拆成“我/喜欢/学习”。这些拆分后的单元会被转换成数字,方便模型
- YOLO训练指南(以V3为例)
niuTaylor
YOLO目标检测深度学习机器学习
YOLO训练指南(以V3为例)前言了解yolo3https://cloud.tencent.com/developer/news/76803https://www.bilibili.com/video/av77670746/1.总教程★★★https://blog.csdn.net/USTCsunyue/article/details/93648307★★★★https://blog.csdn.n
- 深度学习:偏差和方差
壹十壹
深度学习深度学习人工智能python机器学习
偏差(Bias)偏差衡量了模型预测值的平均值与真实值之间的差距。换句话说,偏差描述了模型预测的准确度。一个高偏差的模型容易出现欠拟合,即模型无法捕捉数据中的真实关系,因为它对数据的特征做出了错误的假设。特征:高偏差的模型通常是过于简单的模型,无法对数据中的复杂关系进行准确建模。高偏差模型的训练误差和测试误差可能都较高。解决方法:增加模型复杂度:例如增加多项式的阶数、增加神经网络的层数等。使用更多的
- 《 YOLOv5、YOLOv8、YOLO11训练的关键文件:data.yaml文件编写全解》
空云风语
人工智能YOLO机器视觉目标跟踪人工智能计算机视觉YOLO
走进YOLOv5、YOLOv8、YOLO11的data.yaml在计算机视觉领域的广袤星空中,目标检测无疑是一颗璀璨的明星,它广泛应用于自动驾驶、智能安防、工业检测、医疗影像分析等众多关键领域,发挥着不可或缺的作用。而YOLO系列算法,更是以其独特的“一次看全(YouOnlyLookOnce)”理念和卓越的性能,在目标检测领域中独树一帜,成为了众多研究者和开发者的首选工具。从最初的YOLOv1横空
- 基于transformer实现机器翻译(日译中)
小白_laughter
课程学习transformer机器翻译深度学习
文章目录一、引言二、使用编码器—解码器和注意力机制来实现机器翻译模型2.0含注意力机制的编码器—解码器2.1读取和预处理数据2.2含注意力机制的编码器—解码器2.3训练模型2.4预测不定长的序列2.5评价翻译结果三、使用Transformer架构和PyTorch深度学习库来实现的日中机器翻译模型3.1、导入必要的库3.2、数据集准备3.3、准备分词器3.4、构建TorchText词汇表对象,并将句
- SeisMoLLM: Advancing Seismic Monitoring via Cross-modal Transfer with Pre-trained Large Language
UnknownBody
LLMDailyMultimodal语言模型人工智能自然语言处理
摘要深度学习的最新进展给地震监测带来了革命性变化,但开发一个能在多个复杂任务中表现出色的基础模型仍然充满挑战,尤其是在处理信号退化或数据稀缺的情况时。本文提出SeisMoLLM,这是首个利用跨模态迁移进行地震监测的基础模型,它无需在地震数据集上进行直接预训练,就能充分发挥大规模预训练大语言模型的强大能力。通过精心设计的波形标记化处理和对预训练GPT-2模型的微调,SeisMoLLM在DiTing和
- 【每日一题 | 2025】3.3 ~ 3.9
Guiat
每日一题每日一题
个人主页:Guiat归属专栏:每日一题文章目录1.【3.3】10387[蓝桥杯2024省A]训练士兵2.【3.4】P8601[蓝桥杯2013省A]剪格子3.【3.5】P9241[蓝桥杯2023省B]飞机降落4.【3.6】P10578[蓝桥杯2024国A]旋转九宫格5.【3.7】P8642[蓝桥杯2016国AC]路径之谜6.【3.8】P8694[蓝桥杯2019国AC]估计人数7.【3.9】数字接龙正
- 【Hugging Face】transformers 库中 model 的常用方法和属性
彬彬侠
HuggingFacemodel模型的属性和方法transformersHuggingFacepython
HuggingFacetransformers库中model的常用方法和属性在transformers库中,model代表预训练的Transformer模型,可用于文本分类、问答、文本生成等任务。不同任务的model可能会有不同的方法和属性,但它们共享许多常见功能。1.model的常见属性在加载AutoModel或AutoModelForXXX后,可以使用以下属性:fromtransformers
- 知识蒸馏论文精选——《Graph-Free Knowledge Distillation for Graph Neural Networks 》
宇直不会放弃
GKD-Outputlayer人工智能数据挖掘机器学习深度学习神经网络cnnpytorch
(GFKD)无图知识蒸馏《Graph-FreeKnowledgeDistillationforGraphNeuralNetworks》2021作者是XiangDeng和ZhongfeiZhang,来自纽约州立大学宾汉姆顿分校论文地址见文末摘要知识蒸馏(KnowledgeDistillation,KD)通过强制学生网络模仿在训练数据上预训练老师网络的输出,从而将知识从老师网络转移到学生网络。然而,在
- HarmonyNext实战案例:基于ArkTS的高性能分布式机器学习应用开发
harmonyos-next
HarmonyNext实战案例:基于ArkTS的高性能分布式机器学习应用开发引言在HarmonyNext生态系统中,分布式机器学习是其核心特性之一。通过分布式机器学习,开发者可以充分利用多设备的计算资源,实现复杂模型的训练与推理。本文将深入探讨如何使用ArkTS12+语法开发一个高性能的分布式机器学习应用,涵盖从基础概念到高级技巧的全面讲解。通过本案例,您将学习到如何利用HarmonyNext的分
- 成功案例丨开发时间从1小时缩短到3分钟:如何利用历史数据训练AI模型,预测设计性能?
Altair澳汰尔
PhysicsAI仿真AI机器学习HyperWorks数据分析
案例简介PhysicsAI™助力HEROMOTOCORP实现设计效率提升99%印度领先的跨国摩托车和踏板车制造商HeroMotoCorpLtd.(以下简称Hero)致力于通过将人工智能(AI)和机器学习技术融入有限元分析(FEA)流程,以加速产品开发周期。在其首个AI驱动项目——摩托车把手设计优化中,Hero采用了PhysicsAI™几何深度学习解决方案,利用历史数据训练AI模型并预测设计性能。A
- 关于两次项目的学习感悟
罗婕斯特
大数据
经过这两次项目,我学到了以下几点:1.模块化与结构化思维:代码展示了如何将深度学习任务分解为多个模块(如数据加载、模型定义、训练循环、评估等)。这种模块化的思维方式不仅适用于编程,也可以应用于解决复杂问题时的结构化思考。2.细节决定成败:代码中涉及了许多细节,如数据预处理、学习率调整、损失函数的选择等。这些细节对模型的最终性能有着重要影响。这提醒我们,在解决实际问题时,细节往往决定成败,需要耐心和
- springmvc 下 freemarker页面枚举的遍历输出
杨白白
enumfreemarker
spring mvc freemarker 中遍历枚举
1枚举类型有一个本地方法叫values(),这个方法可以直接返回枚举数组。所以可以利用这个遍历。
enum
public enum BooleanEnum {
TRUE(Boolean.TRUE, "是"), FALSE(Boolean.FALSE, "否");
- 实习简要总结
byalias
工作
来白虹不知不觉中已经一个多月了,因为项目还在需求分析及项目架构阶段,自己在这段
时间都是在学习相关技术知识,现在对这段时间的工作及学习情况做一个总结:
(1)工作技能方面
大体分为两个阶段,Java Web 基础阶段和Java EE阶段
1)Java Web阶段
在这个阶段,自己主要着重学习了 JSP, Servlet, JDBC, MySQL,这些知识的核心点都过
了一遍,也
- Quartz——DateIntervalTrigger触发器
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2208559 一.概述
simpleTrigger 内部实现机制是通过计算间隔时间来计算下次的执行时间,这就导致他有不适合调度的定时任务。例如我们想每天的 1:00AM 执行任务,如果使用 SimpleTrigger,间隔时间就是一天。注意这里就会有一个问题,即当有 misfired 的任务并且恢复执行时,该执行时间
- Unix快捷键
18289753290
unixUnix;快捷键;
复制,删除,粘贴:
dd:删除光标所在的行 &nbs
- 获取Android设备屏幕的相关参数
酷的飞上天空
android
包含屏幕的分辨率 以及 屏幕宽度的最大dp 高度最大dp
TextView text = (TextView)findViewById(R.id.text);
DisplayMetrics dm = new DisplayMetrics();
text.append("getResources().ge
- 要做物联网?先保护好你的数据
蓝儿唯美
数据
根据Beecham Research的说法,那些在行业中希望利用物联网的关键领域需要提供更好的安全性。
在Beecham的物联网安全威胁图谱上,展示了那些可能产生内外部攻击并且需要通过快速发展的物联网行业加以解决的关键领域。
Beecham Research的技术主管Jon Howes说:“之所以我们目前还没有看到与物联网相关的严重安全事件,是因为目前还没有在大型客户和企业应用中进行部署,也就
- Java取模(求余)运算
随便小屋
java
整数之间的取模求余运算很好求,但几乎没有遇到过对负数进行取模求余,直接看下面代码:
/**
*
* @author Logic
*
*/
public class Test {
public static void main(String[] args) {
// TODO A
- SQL注入介绍
aijuans
sql注入
二、SQL注入范例
这里我们根据用户登录页面
<form action="" > 用户名:<input type="text" name="username"><br/> 密 码:<input type="password" name="passwor
- 优雅代码风格
aoyouzi
代码
总结了几点关于优雅代码风格的描述:
代码简单:不隐藏设计者的意图,抽象干净利落,控制语句直截了当。
接口清晰:类型接口表现力直白,字面表达含义,API 相互呼应以增强可测试性。
依赖项少:依赖关系越少越好,依赖少证明内聚程度高,低耦合利于自动测试,便于重构。
没有重复:重复代码意味着某些概念或想法没有在代码中良好的体现,及时重构消除重复。
战术分层:代码分层清晰,隔离明确,
- 布尔数组
百合不是茶
java布尔数组
androi中提到了布尔数组;
布尔数组默认的是false, 并且只会打印false或者是true
布尔数组的例子; 根据字符数组创建布尔数组
char[] c = {'p','u','b','l','i','c'};
//根据字符数组的长度创建布尔数组的个数
boolean[] b = new bool
- web.xml之welcome-file-list、error-page
bijian1013
javaweb.xmlservleterror-page
welcome-file-list
1.定义:
<welcome-file-list>
<welcome-file>login.jsp</welcome>
</welcome-file-list>
2.作用:用来指定WEB应用首页名称。
error-page1.定义:
<error-page&g
- richfaces 4 fileUpload组件删除上传的文件
sunjing
clearRichfaces 4fileupload
页面代码
<h:form id="fileForm"> <rich:
- 技术文章备忘
bit1129
技术文章
Zookeeper
http://wenku.baidu.com/view/bab171ffaef8941ea76e05b8.html
http://wenku.baidu.com/link?url=8thAIwFTnPh2KL2b0p1V7XSgmF9ZEFgw4V_MkIpA9j8BX2rDQMPgK5l3wcs9oBTxeekOnm5P3BK8c6K2DWynq9nfUCkRlTt9uV
- org.hibernate.hql.ast.QuerySyntaxException: unexpected token: on near line 1解决方案
白糖_
Hibernate
文章摘自:http://blog.csdn.net/yangwawa19870921/article/details/7553181
在编写HQL时,可能会出现这种代码:
select a.name,b.age from TableA a left join TableB b on a.id=b.id
如果这是HQL,那么这段代码就是错误的,因为HQL不支持
- sqlserver按照字段内容进行排序
bozch
按照内容排序
在做项目的时候,遇到了这样的一个需求:
从数据库中取出的数据集,首先要将某个数据或者多个数据按照地段内容放到前面显示,例如:从学生表中取出姓李的放到数据集的前面;
select * fro
- 编程珠玑-第一章-位图排序
bylijinnan
java编程珠玑
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;
import java.util.Random;
public class BitMapSearch {
- Java关于==和equals
chenbowen00
java
关于==和equals概念其实很简单,一个是比较内存地址是否相同,一个比较的是值内容是否相同。虽然理解上不难,但是有时存在一些理解误区,如下情况:
1、
String a = "aaa";
a=="aaa";
==> true
2、
new String("aaa")==new String("aaa
- [IT与资本]软件行业需对外界投资热情保持警惕
comsci
it
我还是那个看法,软件行业需要增强内生动力,尽量依靠自有资金和营业收入来进行经营,避免在资本市场上经受各种不同类型的风险,为企业自主研发核心技术和产品提供稳定,温和的外部环境...
如果我们在自己尚未掌握核心技术之前,企图依靠上市来筹集资金,然后使劲往某个领域砸钱,然
- oracle 数据块结构
daizj
oracle块数据块块结构行目录
oracle 数据块是数据库存储的最小单位,一般为操作系统块的N倍。其结构为:
块头--〉空行--〉数据,其实际为纵行结构。
块的标准大小由初始化参数DB_BLOCK_SIZE指定。具有标准大小的块称为标准块(Standard Block)。块的大小和标准块的大小不同的块叫非标准块(Nonstandard Block)。同一数据库中,Oracle9i及以上版本支持同一数据库中同时使用标
- github上一些觉得对自己工作有用的项目收集
dengkane
github
github上一些觉得对自己工作有用的项目收集
技能类
markdown语法中文说明
回到顶部
全文检索
elasticsearch
bigdesk elasticsearch管理插件
回到顶部
nosql
mapdb 支持亿级别map, list, 支持事务. 可考虑做为缓存使用
C
- 初二上学期难记单词二
dcj3sjt126com
englishword
dangerous 危险的
panda 熊猫
lion 狮子
elephant 象
monkey 猴子
tiger 老虎
deer 鹿
snake 蛇
rabbit 兔子
duck 鸭
horse 马
forest 森林
fall 跌倒;落下
climb 爬;攀登
finish 完成;结束
cinema 电影院;电影
seafood 海鲜;海产食品
bank 银行
- 8、mysql外键(FOREIGN KEY)的简单使用
dcj3sjt126com
mysql
一、基本概念
1、MySQL中“键”和“索引”的定义相同,所以外键和主键一样也是索引的一种。不同的是MySQL会自动为所有表的主键进行索引,但是外键字段必须由用户进行明确的索引。用于外键关系的字段必须在所有的参照表中进行明确地索引,InnoDB不能自动地创建索引。
2、外键可以是一对一的,一个表的记录只能与另一个表的一条记录连接,或者是一对多的,一个表的记录与另一个表的多条记录连接。
3、如
- java循环标签 Foreach
shuizhaosi888
标签java循环foreach
1. 简单的for循环
public static void main(String[] args) {
for (int i = 1, y = i + 10; i < 5 && y < 12; i++, y = i * 2) {
System.err.println("i=" + i + " y="
- Spring Security(05)——异常信息本地化
234390216
exceptionSpring Security异常信息本地化
异常信息本地化
Spring Security支持将展现给终端用户看的异常信息本地化,这些信息包括认证失败、访问被拒绝等。而对于展现给开发者看的异常信息和日志信息(如配置错误)则是不能够进行本地化的,它们是以英文硬编码在Spring Security的代码中的。在Spring-Security-core-x
- DUBBO架构服务端告警Failed to send message Response
javamingtingzhao
架构DUBBO
废话不多说,警告日志如下,不知道有哪位遇到过,此异常在服务端抛出(服务器启动第一次运行会有这个警告),后续运行没问题,找了好久真心不知道哪里错了。
WARN 2015-07-18 22:31:15,272 com.alibaba.dubbo.remoting.transport.dispatcher.ChannelEventRunnable.run(84)
- JS中Date对象中几个用法
leeqq
JavaScriptDate最后一天
近来工作中遇到这样的两个需求
1. 给个Date对象,找出该时间所在月的第一天和最后一天
2. 给个Date对象,找出该时间所在周的第一天和最后一天
需求1中的找月第一天很简单,我记得api中有setDate方法可以使用
使用setDate方法前,先看看getDate
var date = new Date();
console.log(date);
// Sat J
- MFC中使用ado技术操作数据库
你不认识的休道人
sqlmfc
1.在stdafx.h中导入ado动态链接库
#import"C:\Program Files\Common Files\System\ado\msado15.dll" no_namespace rename("EOF","end")2.在CTestApp文件的InitInstance()函数中domodal之前写::CoIniti
- Android Studio加速
rensanning
android studio
Android Studio慢、吃内存!启动时后会立即通过Gradle来sync & build工程。
(1)设置Android Studio
a) 禁用插件
File -> Settings... Plugins 去掉一些没有用的插件。
比如:Git Integration、GitHub、Google Cloud Testing、Google Cloud
- 各数据库的批量Update操作
tomcat_oracle
javaoraclesqlmysqlsqlite
MyBatis的update元素的用法与insert元素基本相同,因此本篇不打算重复了。本篇仅记录批量update操作的
sql语句,懂得SQL语句,那么MyBatis部分的操作就简单了。 注意:下列批量更新语句都是作为一个事务整体执行,要不全部成功,要不全部回滚。
MSSQL的SQL语句
WITH R AS(
SELECT 'John' as name, 18 as
- html禁止清除input文本输入缓存
xp9802
input
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off"; eg: <input type="text" autocomplete="off" name