python 下载安装 torch CUDA版本

检查计算机GPU型号是否支持coda

CUDA是 NVIDIA 专为图形处理单元 (GPU) 上的通用计算开发的并行计算平台和编程模型,开发者可以借助CUDA平台利用GPU的强大性能显著加速计算应用,下表是官方提供CUDA支持显卡清单。官方查询网址:CUDA | 支援的GPU | GeForce

打不开的可以直接参照下表:

显卡型号 计算能力
NVIDIA NVS 810 5
NVIDIA NVS 510 3
NVIDIA NVS 315 2.1
NVIDIA NVS 310 2.1
NVIDIA A100 8
NVIDIA A40 8.6
NVIDIA A30 8
NVIDIA A10 8.6
NVIDIA A16 8.6
NVIDIA A2 8.6
NVIDIA T4 7.5
NVIDIA V100 7
Tesla P100 6
Tesla P40 6.1
Tesla P4 6.1
Tesla M60 5.2
Tesla M40 5.2
Tesla K80 3.7
Tesla K40 3.5
Tesla K20 3.5
Tesla K10 3
RTX A6000 8.6
RTX A5000 8.6
RTX A4000 8.6
T1000 7.5
T600 7.5
T400 7.5
Quadro RTX 8000 7.5
Quadro RTX 6000 7.5
Quadro RTX 5000 7.5
Quadro RTX 4000 7.5
Quadro GV100 7
Quadro GP100 6
Quadro P6000 6.1
Quadro P5000 6.1
Quadro P4000 6.1
Quadro P2200 6.1
Quadro P2000 6.1
Quadro P1000 6.1
Quadro P620 6.1
Quadro P600 6.1
Quadro P400 6.1
Quadro M6000 24GB 5.2
Quadro M6000 5.2
Quadro K6000 3.5
Quadro M5000 5.2
Quadro K5200 3.5
Quadro K5000 3
Quadro M4000 5.2
Quadro K4200 3
Quadro K4000 3
Quadro M2000 5.2
Quadro K2200 5
Quadro K2000 3
Quadro K2000D 3
Quadro K1200 5
Quadro K620 5
Quadro K600 3
Quadro K420 3
Quadro 410 3
Quadro Plex 7000 2
RTX A5000 8.6
RTX A4000 8.6
RTX A3000 8.6
RTX A2000 8.6
RTX 5000 7.5
RTX 4000 7.5
RTX 3000 7.5
T2000 7.5
T1200 7.5
T1000 7.5
T600 7.5
T500 7.5
P620 6.1
P520 6.1
Quadro P5200 6.1
Quadro P4200 6.1
Quadro P3200 6.1
Quadro P5000 6.1
Quadro P4000 6.1
Quadro P3000 6.1
Quadro P2000 6.1
Quadro P1000 6.1
Quadro P600 6.1
Quadro P500 6.1
Quadro M5500M 5.2
Quadro M2200 5.2
Quadro M1200 5
Quadro M620 5.2
Quadro M520 5
Quadro K6000M 3
Quadro K5200M 3
Quadro K5100M 3
Quadro M5000M 5
Quadro K500M 3
Quadro K4200M 3
Quadro K4100M 3
Quadro M4000M 5
Quadro K3100M 3
Quadro M3000M 5
Quadro K2200M 3
Quadro K2100M 3
Quadro M2000M 5
Quadro K1100M 3
Quadro M1000M 5
Quadro K620M 5
Quadro K610M 3.5
Quadro M600M 5
Quadro K510M 3.5
Quadro M500M 5
NVIDIA NVS 810 5
NVIDIA NVS 510 3
NVIDIA NVS 315 2.1
NVIDIA NVS 310 2.1
NVS 5400M 2.1
NVS 5200M 2.1
NVS 4200M 2.1
GeForce RTX 3090 Ti 8.6
GeForce RTX 3090 8.6
GeForce RTX 3080 Ti 8.6
GeForce RTX 3080 8.6
GeForce RTX 3070 Ti 8.6
GeForce RTX 3070 8.6
Geforce RTX 3060 Ti 8.6
Geforce RTX 3060 8.6
GeForce GTX 1650 Ti 7.5
NVIDIA TITAN RTX 7.5
Geforce RTX 2080 Ti 7.5
Geforce RTX 2080 7.5
Geforce RTX 2070 7.5
Geforce RTX 2060 7.5
NVIDIA TITAN V 7
NVIDIA TITAN Xp 6.1
NVIDIA TITAN X 6.1
GeForce GTX 1080 Ti 6.1
GeForce GTX 1080 6.1
GeForce GTX 1070 Ti 6.1
GeForce GTX 1070 6.1
GeForce GTX 1060 6.1
GeForce GTX 1050 6.1
GeForce GTX TITAN X 5.2
GeForce GTX TITAN Z 3.5
GeForce GTX TITAN Black 3.5
GeForce GTX TITAN 3.5
GeForce GTX 980 Ti 5.2
GeForce GTX 980 5.2
GeForce GTX 970 5.2
GeForce GTX 960 5.2
GeForce GTX 950 5.2
GeForce GTX 780 Ti 3.5
GeForce GTX 780 3.5
GeForce GTX 770 3
GeForce GTX 760 3
GeForce GTX 750 Ti 5
GeForce GTX 750 5
GeForce GTX 690 3
GeForce GTX 680 3
GeForce GTX 670 3
GeForce GTX 660 Ti 3
GeForce GTX 660 3
GeForce GTX 650 Ti BOOST 3
GeForce GTX 650 Ti 3
GeForce GTX 650 3
GeForce GTX 560 Ti 2.1
GeForce GTX 550 Ti 2.1
GeForce GTX 460 2.1
GeForce GTS 450 2.1
GeForce GTX 590 2
GeForce GTX 580 2
GeForce GTX 570 2
GeForce GTX 480 2
GeForce GTX 470 2
GeForce GTX 465 2
GeForce GT 740 3
GeForce GT 730 3.5
GeForce GT 730 DDR3,128bit 2.1
GeForce GT 720 3.5
GeForce GT 640 (GDDR5) 3.5
GeForce GT 640 (GDDR3) 2.1
GeForce GT 630 2.1
GeForce GT 620 2.1
GeForce GT 610 2.1
GeForce GT 520 2.1
GeForce GT 440 2.1
GeForce GT 430 2.1
GeForce RTX 3080 Ti 8.6
GeForce RTX 3080 8.6
GeForce RTX 3070 Ti 8.6
GeForce RTX 3070 8.6
GeForce RTX 3060 8.6
GeForce RTX 3050 Ti 8.6
GeForce RTX 3050 8.6
Geforce RTX 2080 7.5
Geforce RTX 2070 7.5
Geforce RTX 2060 7.5
GeForce GTX 1080 6.1
GeForce GTX 1070 6.1
GeForce GTX 1060 6.1
GeForce GTX 980 5.2
GeForce GTX 980M 5.2
GeForce GTX 970M 5.2
GeForce GTX 965M 5.2
GeForce GTX 960M 5
GeForce GTX 950M 5
GeForce 940M 5
GeForce 930M 5
GeForce 920M 3.5
GeForce 910M 5.2
GeForce GTX 880M 3
GeForce GTX 870M 3
GeForce GTX 860M 3.0/5.0(**)
GeForce GTX 850M 5
GeForce 840M 5
GeForce 830M 5
GeForce 820M 2.1
GeForce 800M 2.1
GeForce GTX 780M 3
GeForce GTX 770M 3
GeForce GTX 760M 3
GeForce GTX 680MX 3
GeForce GTX 680M 3
GeForce GTX 675MX 3
GeForce GTX 675M 2.1
GeForce GTX 670MX 3
GeForce GTX 670M 2.1
GeForce GTX 660M 3
GeForce GT 755M 3
GeForce GT 750M 3
GeForce GT 650M 3
GeForce GT 745M 3
GeForce GT 645M 3
GeForce GT 740M 3
GeForce GT 730M 3
GeForce GT 640M 3
GeForce GT 640M LE 3
GeForce GT 735M 3
GeForce GT 635M 2.1
GeForce GT 730M 3
GeForce GT 630M 2.1
GeForce GT 625M 2.1
GeForce GT 720M 2.1
GeForce GT 620M 2.1
GeForce 710M 2.1
GeForce 705M 2.1
GeForce 610M 2.1
GeForce GTX 580M 2.1
GeForce GTX 570M 2.1
GeForce GTX 560M 2.1
GeForce GT 555M 2.1
GeForce GT 550M 2.1
GeForce GT 540M 2.1
GeForce GT 525M 2.1
GeForce GT 520MX 2.1
GeForce GT 520M 2.1
GeForce GTX 485M 2.1
GeForce GTX 470M 2.1
GeForce GTX 460M 2.1
GeForce GT 445M 2.1
GeForce GT 435M 2.1
GeForce GT 420M 2.1
GeForce GT 415M 2.1
GeForce GTX 480M 2
GeForce 710M 2.1
GeForce 410M 2.1
Jetson AGX Xavier 7.2
Jetson Nano 5.3
Jetson TX2 6.2
Jetson TX1 5.3
Tegra X1

5.3

安装pytorch

查看驱动版本

打开命令行(Win+R)输入下方命令:

nvidia-smi

python 下载安装 torch CUDA版本_第1张图片

 Driver Version必须大于396.26才可安装,若小于,可通过电脑管家升级,或NVIDIA驱动下载

 进入pytorch首页PyTorch

python 下载安装 torch CUDA版本_第2张图片

复制红色框中的安装指令 

打开Anaconda Powershell Prompt , 粘贴安装命令:

python 下载安装 torch CUDA版本_第3张图片

这一步输入y,回车即可

检查torch是否使用于计算机cpu

进入python环境:

import torch

torch.cuda.is_available()

提示:True 表示支持 ,False表示不支持

 

你可能感兴趣的:(pytorch,python,深度学习)