[]{#_Toc405731550 .anchor}
目录
机器学习的数学基础 1
高等数学 1
线性代数 9
概率论和数理统计 19
1.导数定义:
导数和微分的概念
f ′ ( x 0 ) = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δx f'(x_{0}) = \lim_{\Delta x \rightarrow 0}\,\frac{f(x_{0} + \Delta x) - f(x_{0})}{\text{Δx}} f′(x0)=limΔx→0Δxf(x0+Δx)−f(x0)
(1)
或者: f ′ ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_{0}) = \lim_{x \rightarrow x_{0}}\,\frac{f(x) - f(x_{0})}{x - x_{0}} f′(x0)=limx→x0x−x0f(x)−f(x0)
(2)
2.左右导数导数的几何意义和物理意义
函数 f ( x ) f(x) f(x)在 x 0 x_{0} x0处的左、右导数分别定义为:
左导数: f ′ − ( x 0 ) = lim Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δx = lim x → x 0 − f ( x ) − f ( x 0 ) x − x 0 , ( x = x 0 + Δ x ) {f'}_{-}(x_{0}) = \lim_{\Delta x \rightarrow 0^{-}}\,\frac{f(x_{0} + \Delta x) - f(x_{0})}{\text{Δx}} = \lim_{x \rightarrow x_{0}^{-}}\,\frac{f(x) - f(x_{0})}{x - x_{0}},(x = x_{0} + \Delta x) f′−(x0)=limΔx→0−Δxf(x0+Δx)−f(x0)=limx→x0−x−x0f(x)−f(x0),(x=x0+Δx)
右导数: f ′ + ( x 0 ) = lim Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δx = lim x → x 0 + f ( x ) − f ( x 0 ) x − x 0 {f'}_{+}(x_{0}) = \lim_{\Delta x \rightarrow 0^{+}}\,\frac{f(x_{0} + \Delta x) - f(x_{0})}{\text{Δx}} = \lim_{x \rightarrow x_{0}^{+}}\,\frac{f(x) - f(x_{0})}{x - x_{0}} f′+(x0)=limΔx→0+Δxf(x0+Δx)−f(x0)=limx→x0+x−x0f(x)−f(x0)
3.函数的可导性与连续性之间的关系
Th1:
函数 f ( x ) f(x) f(x)在 x 0 x_{0} x0处可微 ⇔ f ( x ) \Leftrightarrow f(x) ⇔f(x)在 x 0 x_{0} x0处可导。
**Th2:**若函数在点 x 0 x_{0} x0处可导,则 y = f ( x ) y = f(x) y=f(x)在点 x 0 x_{0} x0处连续,反之则不成立.即函数连续不一定可导。
Th3: f ′ ( x 0 ) f'(x_{0}) f′(x0)存在 ⇔ f ′ − ( x 0 ) = f ′ + ( x 0 ) \Leftrightarrow {f'}_{-}(x_{0}) = {f'}_{+}(x_{0}) ⇔f′−(x0)=f′+(x0)
4.平面曲线的切线和法线
切线方程 : y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y - y_{0} = f'(x_{0})(x - x_{0}) y−y0=f′(x0)(x−x0)
法线方程: y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) , f ′ ( x 0 ) ≠ 0 y - y_{0} = - \frac{1}{f'(x_{0})}(x - x_{0}),f'(x_{0}) \neq 0 y−y0=−f′(x0)1(x−x0),f′(x0)=0
5.四则运算法则
设函数 u = u ( x ) , v = v ( x ) u = u(x),v = v(x) u=u(x),v=v(x)在点 x x x可导,则:
(1) ( u ± v ) ′ = u ′ ± v ′ \left( u \pm v \right)^{'} = u^{'} \pm v^{'} (u±v)′=u′±v′ \text{\ \ \ \ }
(2) ( uv ) ′ = uv ′ + vu ′ (\text{uv})' = \text{uv}' + \text{vu}' (uv)′=uv′+vu′
d ( uv ) = udv + vdu d(\text{uv}) = \text{udv} + \text{vdu} d(uv)=udv+vdu
(3) ( u v ) ′ = vu ′ − uv ′ v 2 ( v ≠ 0 ) (\frac{u}{v})' = \frac{\text{vu}' - \text{uv}'}{v^{2}}(v \neq 0) (vu)′=v2vu′−uv′(v=0)
d ( u v ) = vdu − udv v 2 d(\frac{u}{v}) = \frac{\text{vdu} - \text{udv}}{v^{2}} d(vu)=v2vdu−udv
6.基本导数与微分表
(1) y = c y = c y=c(常数) 则: y ′ = 0 y^{'} = 0 y′=0 dy = 0 \text{dy} = 0 dy=0
(2) y = x α y = x^{\alpha} y=xα( α \alpha α为实数) 则: y ′ = α x α − 1 y' = \alpha x^{\alpha - 1} y′=αxα−1
dy = α x α − 1 dx \text{dy} = \alpha x^{\alpha - 1}\text{dx} dy=αxα−1dx
(3) y = a x y = a^{x} y=ax 则: y ′ = a x ln a y' = a^{x}\ln a y′=axlna dy = a x ln adx \text{dy} = a^{x}\ln\text{adx} dy=axlnadx
特例: ( e x ) ′ = e x (e^{x})' = e^{x} (ex)′=ex d ( e x ) = e x dx d(e^{x}) = e^{x}\text{dx} d(ex)=exdx
(4) y ′ = 1 x ln a y' = \frac{1}{x\ln a} y′=xlna1 则: dy = 1 x ln a dx \text{dy} = \frac{1}{x\ln a}\text{dx} dy=xlna1dx
特例: y = l n x y = lnx y=lnx ( l n x ) ′ = 1 x (lnx)' = \frac{1}{x} (lnx)′=x1 d ( l n x ) = 1 x dx d(lnx) = \frac{1}{x}\text{dx} d(lnx)=x1dx
(5) y = s i n x y = sinx y=sinx 则: y ′ = c o s x y' = cosx y′=cosx d ( s i n x ) = c o s xdx d(sinx) = cos\text{xdx} d(sinx)=cosxdx
(6) y = c o s x y = cosx y=cosx 则: y ′ = − s i n x y' = - sinx y′=−sinx d ( c o s x ) = − s i n xdx d(cosx) = - sin\text{xdx} d(cosx)=−sinxdx
(7) y = t a n x y = tanx y=tanx 则: y ′ = 1 cos 2 x = sec 2 x y^{'} = \frac{1}{\cos^{2}x} = \sec^{2}x y′=cos2x1=sec2x
d ( t a n x ) = sec 2 xdx d(tanx) = \sec^{2}\text{xdx} d(tanx)=sec2xdx
(8) y = c o t x y = cotx y=cotx 则: y ′ = − 1 sin 2 x = − csc 2 x y' = - \frac{1}{\sin^{2}x} = - \csc^{2}x y′=−sin2x1=−csc2x
d ( c o t x ) = − csc 2 xdx d(cotx) = - \csc^{2}\text{xdx} d(cotx)=−csc2xdx
(9) y = s e c x y = secx y=secx 则: y ′ = s e c x tan x y' = secx\tan x y′=secxtanx d ( s e c x ) = s e c x tan xdx d(secx) = secx\tan\text{xdx} d(secx)=secxtanxdx
(10) y = c s c x y = cscx y=cscx 则: y ′ = − c s c x cot x y' = - cscx\cot x y′=−cscxcotx d ( c s c x ) = − c s c x cot xdx d(cscx) = - cscx\cot\text{xdx} d(cscx)=−cscxcotxdx
(11) y = a r c s i n x y = arcsinx y=arcsinx 则: y ′ = 1 1 − x 2 y' = \frac{1}{\sqrt{1 - x^{2}}} y′=1−x21
d ( a r c s i n x ) = 1 1 − x 2 dx d(arcsinx) = \frac{1}{\sqrt{1 - x^{2}}}\text{dx} d(arcsinx)=1−x21dx
(12) y = a r c c o s x y = arccosx y=arccosx 则: y ′ = − 1 1 − x 2 y' = - \frac{1}{\sqrt{1 - x^{2}}} y′=−1−x21
d ( a r c c o s x ) = − 1 1 − x 2 dx d(arccosx) = - \frac{1}{\sqrt{1 - x^{2}}}\text{dx} d(arccosx)=−1−x21dx
(13) y = a r c t a n x y = arctanx y=arctanx 则: y ′ = 1 1 + x 2 y' = \frac{1}{1 + x^{2}} y′=1+x21
d ( a r c t a n x ) = 1 1 + x 2 dx d(arctanx) = \frac{1}{1 + x^{2}}\text{dx} d(arctanx)=1+x21dx
(14) y = a r c c o t x y = arccotx y=arccotx 则: y ′ = − 1 1 + x 2 y' = - \frac{1}{1 + x^{2}} y′=−1+x21
d ( a r c c o t x ) = − 1 1 + x 2 dx d(arccotx) = - \frac{1}{1 + x^{2}}\text{dx} d(arccotx)=−1+x21dx
(15) y = s x y = sx y=sx 则: y ′ = c x y' = cx y′=cx d ( s x ) = c x d x d(sx) = cxdx d(sx)=cxdx
(16) y = c x y = cx y=cx 则: y ′ = s x y' = sx y′=sx d ( c x ) = s x d x d(cx) = sxdx d(cx)=sxdx
7.复合函数,反函数,隐函数以及参数方程所确定的函数的微分法
(1) 反函数的运算法则:
设 y = f ( x ) y = f(x) y=f(x)在点 x x x的某邻域内单调连续,在点 x x x处可导且 f ′ ( x ) ≠ 0 f'(x) \neq 0 f′(x)=0,则其反函数在点 x x x所对应的 y y y处可导,并且有 dy dx = 1 dx dy \frac{\text{dy}}{\text{dx}} = \frac{1}{\frac{\text{dx}}{\text{dy}}} dxdy=dydx1
(2)
复合函数的运算法则:若 μ = φ ( x ) \mu = \varphi(x) μ=φ(x)在点 x x x可导,而 y = f ( μ ) y = f(\mu) y=f(μ)在对应点 μ \mu μ( μ = φ ( x ) \mu = \varphi(x) μ=φ(x))可导,则复合函数 y = f ( φ ( x ) ) y = f(\varphi(x)) y=f(φ(x))在点 x x x可导,且 y ′ = f ′ ( μ ) ⋅ φ ′ ( x ) y' = f'(\mu) \cdot \varphi'(x) y′=f′(μ)⋅φ′(x)
(3) 隐函数导数 dy dx \frac{\text{dy}}{\text{dx}} dxdy的求法一般有三种方法:
1)方程两边对 x x x求导,要记住 y y y是 x x x的函数,则 y y y的函数是 x x x的复合函数.例如 1 y \frac{1}{y} y1, y 2 y^{2} y2, lny \text{lny} lny, e y e^{y} ey等均是 x x x的复合函数.
对 x x x求导应按复合函数连锁法则做。
2)公式法.由 F ( x , y ) = 0 F(x,y) = 0 F(x,y)=0知
dy dx = − F ′ x ( x , y ) F ′ y ( x , y ) \frac{\text{dy}}{\text{dx}} = - \frac{{F'}_{x}(x,y)}{{F'}_{y}(x,y)} dxdy=−F′y(x,y)F′x(x,y),其中, F ′ x ( x , y ) {F'}_{x}(x,y) F′x(x,y),
F ′ y ( x , y ) {F'}_{y}(x,y) F′y(x,y)分别表示 F ( x , y ) F(x,y) F(x,y)对 x x x和 y y y的偏导数。
3)利用微分形式不变性
8.常用高阶导数公式
(1)KaTeX parse error: Got group of unknown type: 'internal'
(2)KaTeX parse error: Got group of unknown type: 'internal'
(3)KaTeX parse error: Got group of unknown type: 'internal'
(4)KaTeX parse error: Got group of unknown type: 'internal'
(5)KaTeX parse error: Got group of unknown type: 'internal'
(6)莱布尼兹公式:若 u ( x ) , v ( x ) u(x)\,,v(x) u(x),v(x)均 n n n阶可导,则:
( uv ) ( n ) = ∑ i = 0 n c n i u ( i ) v ( n − i ) {(\text{uv})}^{(n)} = \sum_{i = 0}^{n}{c_{n}^{i}u^{(i)}v^{(n - i)}} (uv)(n)=∑i=0ncniu(i)v(n−i),其中 u ( 0 ) = u u^{(0)} = u u(0)=u, v ( 0 ) = v v^{(0)} = v v(0)=v
9.微分中值定理,泰勒公式
Th1:(费马定理)
若函数 f ( x ) f(x) f(x)满足条件:
(1)函数 f ( x ) f(x) f(x)在 x 0 x_{0} x0的某邻域内有定义,并且在此邻域内恒有
f ( x ) ≤ f ( x 0 ) f(x) \leq f(x_{0}) f(x)≤f(x0)或 f ( x ) ≥ f ( x 0 ) f(x) \geq f(x_{0}) f(x)≥f(x0),
(2) f ( x ) f(x) f(x)在 x 0 x_{0} x0处可导,则有 f ′ ( x 0 ) = 0 f'(x_{0}) = 0 f′(x0)=0
Th2:(罗尔定理)
设函数 f ( x ) f(x) f(x)满足条件:
(1)在闭区间 [ a , b ] \lbrack a,b\rbrack [a,b]上连续;
(2)在 ( a , b ) (a,b) (a,b)内可导;(3) f ( a ) = f ( b ) f\left( a \right) = f\left( b \right) f(a)=f(b)
则在 ( a , b ) (a,b) (a,b)内 ∃ \exists ∃一个 ξ \xi ξ,使 f ′ ( ξ ) = 0 f'(\xi) = 0 f′(ξ)=0
Th3: (拉格朗日中值定理)
设函数 f ( x ) f(x) f(x)满足条件:
(1)在 [ a , b ] \lbrack a,b\rbrack [a,b]上连续;(2)在 ( a , b ) (a,b) (a,b)内可导;
则在 ( a , b ) (a,b) (a,b)内存在一个 ξ \xi ξ,使 f ( b ) − f ( a ) b − a = f ′ ( ξ ) \frac{f(b) - f(a)}{b - a} = f'(\xi) b−af(b)−f(a)=f′(ξ)
Th4: (柯西中值定理)
设函数 f ( x ) f(x) f(x), g ( x ) g(x) g(x)满足条件:
(1) 在 [ a , b ] \lbrack a,b\rbrack [a,b]上连续;(2)
在 ( a , b ) (a,b) (a,b)内可导且 f ′ ( x ) f'(x) f′(x), g ′ ( x ) g'(x) g′(x)均存在,且 g ′ ( x ) ≠ 0 g'(x) \neq 0 g′(x)=0
则在 ( a , b ) (a,b) (a,b)内存在一个 ξ \xi ξ,使
f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)} g(b)−g(a)f(b)−f(a)=g′(ξ)f′(ξ)
10.洛必达法则
法则Ⅰ( 0 0 \frac{\mathbf{0}}{\mathbf{0}} 00型不定式极限)
设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)满足条件:
lim x → x 0 f ( x ) = 0 , lim x → x 0 g ( x ) = 0 \lim_{x \rightarrow x_{0}}\, f\left( x \right) = 0,\lim_{x \rightarrow x_{0}}\, g\left( x \right) = 0 limx→x0f(x)=0,limx→x0g(x)=0;
f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)在 x 0 x_{0} x0的邻域内可导
(在 x 0 x_{0} x0处可除外)且 g ′ ( x ) ≠ 0 g'\left( x \right) \neq 0 g′(x)=0;
lim x → x 0 f ′ ( x ) g ′ ( x ) \lim_{x \rightarrow x_{0}}\,\frac{f'\left( x \right)}{g'\left( x \right)} limx→x0g′(x)f′(x)存在(或 ∞ \infty ∞)。
则:
lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( x ) g ′ ( x ) \lim_{x \rightarrow x_{0}}\,\frac{f\left( x \right)}{g\left( x \right)} = \lim_{x \rightarrow x_{0}}\,\frac{f'\left( x \right)}{g'\left( x \right)} limx→x0g(x)f(x)=limx→x0g′(x)f′(x)
法则 I ′ \mathbf{I'} I′
( 0 0 \frac{\mathbf{0}}{\mathbf{0}} 00型不定式极限)
设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)满足条件:
lim x → ∞ f ( x ) = 0 , lim x → ∞ g ( x ) = 0 \lim_{x \rightarrow \infty}\, f\left( x \right) = 0,\lim_{x \rightarrow \infty}\, g\left( x \right) = 0 limx→∞f(x)=0,limx→∞g(x)=0;存在一个 X > 0 X > 0 X>0,当 ∣ x ∣ > X \left| x \right| > X ∣x∣>X时, f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)可导,且 g ′ ( x ) ≠ 0 g'\left( x \right) \neq 0 g′(x)=0; lim x → x 0 f ′ ( x ) g ′ ( x ) \lim_{x \rightarrow x_{0}}\,\frac{f'\left( x \right)}{g'\left( x \right)} limx→x0g′(x)f′(x)存在(或 ∞ \infty ∞)。
则:
lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( x ) g ′ ( x ) . \lim_{x \rightarrow x_{0}}\,\frac{f\left( x \right)}{g\left( x \right)} = \lim_{x \rightarrow x_{0}}\,\frac{f'\left( x \right)}{g'\left( x \right)}. limx→x0g(x)f(x)=limx→x0g′(x)f′(x).
法则Ⅱ( ∞ ∞ \frac{\mathbf{\infty}}{\mathbf{\infty}} ∞∞**型不定式极限) **
设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)满足条件:
lim x → x 0 f ( x ) = ∞ , lim x → x 0 g ( x ) = ∞ \lim_{x \rightarrow x_{0}}\, f\left( x \right) = \infty,\lim_{x \rightarrow x_{0}}\, g\left( x \right) = \infty limx→x0f(x)=∞,limx→x0g(x)=∞;
f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)在 x 0 x_{0} x0 的邻域内可
导(在 x 0 x_{0} x0处可除外)且 g ′ ( x ) ≠ 0 g'\left( x \right) \neq 0 g′(x)=0; lim x → x 0 f ′ ( x ) g ′ ( x ) \lim_{x \rightarrow x_{0}}\,\frac{f'\left( x \right)}{g'\left( x \right)} limx→x0g′(x)f′(x)存在(或 ∞ \infty ∞)。
则:
lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( x ) g ′ ( x ) . \lim_{x \rightarrow x_{0}}\,\frac{f\left( x \right)}{g\left( x \right)} = \lim_{x \rightarrow x_{0}}\,\frac{f'\left( x \right)}{g'\left( x \right)}. limx→x0g(x)f(x)=limx→x0g′(x)f′(x).
同理法则 I I ′ II' II′( ∞ ∞ \frac{\infty}{\infty} ∞∞型不定式极限)仿法则 I ′ I' I′可写出
11.泰勒公式
设函数 f ( x ) f(x) f(x)在点 x 0 x_{0} x0处的某邻域内具有 n + 1 n + 1 n+1阶导数,则对该邻域内异于 x 0 x_{0} x0的任意点 x x x,在 x 0 x_{0} x0与 x x x之间至少存在一个 ξ \xi ξ,使得:
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ f(x) = f(x_{0}) + f'(x_{0})(x - x_{0}) + \frac{1}{2!}f''(x_{0}){(x - x_{0})}^{2} + \cdots f(x)=f(x0)+f′(x0)(x−x0)+2!1f′′(x0)(x−x0)2+⋯
+ f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) + \frac{f^{(n)}(x_{0})}{n!}{(x - x_{0})}^{n} + R_{n}(x) +n!f(n)(x0)(x−x0)n+Rn(x)
其中
R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 R_{n}(x) = \frac{f^{(n + 1)}(\xi)}{(n + 1)!}{(x - x_{0})}^{n + 1} Rn(x)=(n+1)!f(n+1)(ξ)(x−x0)n+1称为 f ( x ) f(x) f(x)在点 x 0 x_{0} x0处的 n n n阶泰勒余项。
令 x 0 = 0 x_{0} = 0 x0=0,则 n n n阶泰勒公式:
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + R n ( x ) f(x) = f(0) + f'(0)x + \frac{1}{2!}f''(0)x^{2} + \cdots + \frac{f^{(n)}(0)}{n!}x^{n} + R_{n}(x) f(x)=f(0)+f′(0)x+2!1f′′(0)x2+⋯+n!f(n)(0)xn+Rn(x)……
(1) 其中
R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! x n + 1 R_{n}(x) = \frac{f^{(n + 1)}(\xi)}{(n + 1)!}x^{n + 1} Rn(x)=(n+1)!f(n+1)(ξ)xn+1, ξ \xi ξ在0与 x x x之间。(1)式称为麦克劳林公式
常用五种函数在 x 0 = 0 x_{0} = 0 x0=0处的泰勒公式 :
e x = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + x n + 1 ( n + 1 ) ! e ξ e^{x} = 1 + x + \frac{1}{2!}x^{2} + \cdots + \frac{1}{n!}x^{n} + \frac{x^{n + 1}}{(n + 1)!}e^{\xi} ex=1+x+2!1x2+⋯+n!1xn+(n+1)!xn+1eξ
或 = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + o ( x n ) = 1 + x + \frac{1}{2!}x^{2} + \cdots + \frac{1}{n!}x^{n} + o(x^{n}) =1+x+2!1x2+⋯+n!1xn+o(xn)
sin x = x − 1 3 ! x 3 + ⋯ + x n n ! sin nπ 2 + x n + 1 ( n + 1 ) ! sin ( ξ + n + 1 2 π ) \sin x = x - \frac{1}{3!}x^{3} + \cdots + \frac{x^{n}}{n!}\sin\frac{\text{nπ}}{2} + \frac{x^{n + 1}}{\left( n + 1 \right)!}\sin\left( \xi + \frac{n + 1}{2}\pi \right) sinx=x−3!1x3+⋯+n!xnsin2nπ+(n+1)!xn+1sin(ξ+2n+1π)
或
= x − 1 3 ! x 3 + ⋯ + x n n ! sin nπ 2 + o ( x n ) = x - \frac{1}{3!}x^{3} + \cdots + \frac{x^{n}}{n!}\sin\frac{\text{nπ}}{2} + o\left( x^{n} \right) =x−3!1x3+⋯+n!xnsin2nπ+o(xn)
cos x = 1 − 1 2 ! x 2 + ⋯ + x n n ! cos nπ 2 + x n + 1 ( n + 1 ) ! c o s ( ξ + n + 1 2 π ) \cos x = 1 - \frac{1}{2!}x^{2} + \cdots + \frac{x^{n}}{n!}\cos\frac{\text{nπ}}{2} + \frac{x^{n + 1}}{(n + 1)!}cos(\xi + \frac{n + 1}{2}\pi) cosx=1−2!1x2+⋯+n!xncos2nπ+(n+1)!xn+1cos(ξ+2n+1π)
或
= 1 − 1 2 ! x 2 + ⋯ + x n n ! cos nπ 2 + o ( x n ) = 1 - \frac{1}{2!}x^{2} + \cdots + \frac{x^{n}}{n!}\cos\frac{\text{nπ}}{2} + o(x^{n}) =1−2!1x2+⋯+n!xncos2nπ+o(xn)
l n ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 x n n + ( − 1 ) n x n + 1 ( n + 1 ) ( 1 + ξ ) n + 1 ln(1 + x) = x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} - \cdots + {( - 1)}^{n - 1}\frac{x^{n}}{n} + \frac{{( - 1)}^{n}x^{n + 1}}{(n + 1){(1 + \xi)}^{n + 1}} ln(1+x)=x−21x2+31x3−⋯+(−1)n−1nxn+(n+1)(1+ξ)n+1(−1)nxn+1
或
= x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) = x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} - \cdots + {( - 1)}^{n - 1}\frac{x^{n}}{n} + o(x^{n}) =x−21x2+31x3−⋯+(−1)n−1nxn+o(xn)
( 1 + x ) m = 1 + mx + m ( m − 1 ) 2 ! x 2 + ⋯ + m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n {(1 + x)}^{m} = 1 + \text{mx} + \frac{m(m - 1)}{2!}x^{2} + \cdots + \frac{m(m - 1)\cdots(m - n + 1)}{n!}x^{n} (1+x)m=1+mx+2!m(m−1)x2+⋯+n!m(m−1)⋯(m−n+1)xn
+ m ( m − 1 ) ⋯ ( m − n + 1 ) ( n + 1 ) ! x n + 1 ( 1 + ξ ) m − n − 1 + \frac{m(m - 1)\cdots(m - n + 1)}{(n + 1)!}x^{n + 1}{(1 + \xi)}^{m - n - 1} +(n+1)!m(m−1)⋯(m−n+1)xn+1(1+ξ)m−n−1
或
( 1 + x ) m = 1 + mx + m ( m − 1 ) 2 ! x 2 + ⋯ + m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n + o ( x n ) {(1 + x)}^{m} = 1 + \text{mx} + \frac{m(m - 1)}{2!}x^{2} + \cdots + \frac{m(m - 1)\cdots(m - n + 1)}{n!}x^{n} + o(x^{n}) (1+x)m=1+mx+2!m(m−1)x2+⋯+n!m(m−1)⋯(m−n+1)xn+o(xn)
12.函数单调性的判断
Th1:
设函数 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)区间内可导,如果对 ∀ x ∈ ( a , b ) \forall x \in (a,b) ∀x∈(a,b),都有KaTeX parse error: Got group of unknown type: 'internal'(或KaTeX parse error: Got group of unknown type: 'internal'),则函数 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)内是单调增加的(或单调减少)。
Th2:
(取极值的必要条件)设函数 f ( x ) f(x) f(x)在 x 0 x_{0} x0处可导,且在 x 0 x_{0} x0处取极值,则KaTeX parse error: Got group of unknown type: 'internal'.
Th3:
(取极值的第一充分条件)设函数 f ( x ) f(x) f(x)在 x 0 x_{0} x0的某一邻域内可微,且KaTeX parse error: Got group of unknown type: 'internal'(或 f ( x ) f(x) f(x)在 x 0 x_{0} x0处连续,但KaTeX parse error: Got group of unknown type: 'internal'不存在.)。
(1)若当 x x x经过 x 0 x_{0} x0时,KaTeX parse error: Got group of unknown type: 'internal'由“+”变“-”,则 f ( x 0 ) f(x_{0}) f(x0)为极大值;
(2)若当 x x x经过 x 0 x_{0} x0时,KaTeX parse error: Got group of unknown type: 'internal'由“-”变“+”,则 f ( x 0 ) f(x_{0}) f(x0)为极小值;
(3)若KaTeX parse error: Got group of unknown type: 'internal'经过 x = x 0 x = x_{0} x=x0的两侧不变号,则 f ( x 0 ) f(x_{0}) f(x0)不是极值。
Th4:
(取极值的第二充分条件)设 f ( x ) f(x) f(x)在点 x 0 x_{0} x0处有 f ′ ′ ( x ) ≠ 0 f''(x) \neq 0 f′′(x)=0,且KaTeX parse error: Got group of unknown type: 'internal',则:
当KaTeX parse error: Got group of unknown type: 'internal'时, f ( x 0 ) f(x_{0}) f(x0)为极大值;
当KaTeX parse error: Got group of unknown type: 'internal'时, f ( x 0 ) f(x_{0}) f(x0)为极小值.
注:如果KaTeX parse error: Got group of unknown type: 'internal',此方法失效。
13.渐近线的求法
(1)水平渐近线
若 lim x → + ∞ f ( x ) = b \lim_{x \rightarrow + \infty}\, f(x) = b limx→+∞f(x)=b,或 lim x → − ∞ f ( x ) = b \lim_{x \rightarrow - \infty}\, f(x) = b limx→−∞f(x)=b,则 y = b y = b y=b
称为函数 y = f ( x ) y = f(x) y=f(x)的水平渐近线。
(2)铅直渐近线
若 lim x → x 0 − f ( x ) = ∞ \lim_{x \rightarrow x_{0}^{-}}\, f(x) = \infty limx→x0−f(x)=∞,或 lim x → x 0 + f ( x ) = ∞ \lim_{x \rightarrow x_{0}^{+}}\, f(x) = \infty limx→x0+f(x)=∞,则 x = x 0 x = x_{0} x=x0
称为 y = f ( x ) y = f(x) y=f(x)的铅直渐近线。
(3)斜渐近线
若 a = lim x → ∞ f ( x ) x , b = lim x → ∞ [ f ( x ) − ax ] a = \lim_{x \rightarrow \infty}\,\frac{f(x)}{x},\quad b = \lim_{x \rightarrow \infty}\,\lbrack f(x) - \text{ax}\rbrack a=limx→∞xf(x),b=limx→∞[f(x)−ax],则
y = ax + b y = \text{ax} + b y=ax+b称为 y = f ( x ) y = f(x) y=f(x)的斜渐近线。
14.函数凹凸性的判断
Th1: (凹凸性的判别定理)若在I上 f ′ ′ ( x ) < 0 f''(x) < 0 f′′(x)<0(或 f ′ ′ ( x ) > 0 f''(x) > 0 f′′(x)>0),
则 f ( x ) f(x) f(x)在I上是凸的(或凹的)。
Th2:
(拐点的判别定理1)若在 x 0 x_{0} x0处 f ′ ′ ( x ) = 0 f''(x) = 0 f′′(x)=0,(或 f ′ ′ ( x ) f''(x) f′′(x)不存在),当 x x x变动经过 x 0 x_{0} x0时, f ′ ′ ( x ) f''(x) f′′(x)变号,则 ( x 0 , f ( x 0 ) ) (x_{0},f(x_{0})) (x0,f(x0))为拐点。
Th3:
(拐点的判别定理2)设 f ( x ) f(x) f(x)在 x 0 x_{0} x0点的某邻域内有三阶导数,且 f ′ ′ ( x ) = 0 f''(x) = 0 f′′(x)=0, f ′ ′ ′ ( x ) ≠ 0 f'''(x) \neq 0 f′′′(x)=0,则 ( x 0 , f ( x 0 ) ) (x_{0},f(x_{0})) (x0,f(x0))为拐点。
15.弧微分
dS = 1 + y ′ 2 dx \text{dS} = \sqrt{1 + y'^{2}}\text{dx} dS=1+y′2dx
16.曲率
曲线 y = f ( x ) y = f(x) y=f(x)在点 ( x , y ) (x,y) (x,y)处的曲率 k = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 2 . k = \frac{\left| y'' \right|}{{(1 + y'^{2})}^{\frac{3}{2}}}. k=(1+y′2)23∣y′′∣.
对于参数方程:
{ x = φ ( t ) y = ψ ( t ) , k = ∣ φ ′ ( t ) ψ ′ ′ ( t ) − φ ′ ′ ( t ) ψ ′ ( t ) ∣ [ φ ′ 2 ( t ) + ψ ′ 2 ( t ) ] 3 2 \left\{ \begin{matrix} & x = \varphi(t) \\ & y = \psi(t) \\ \end{matrix} \right.\ ,k = \frac{\left| \varphi'(t)\psi''(t) - \varphi''(t)\psi'(t) \right|}{{\lbrack\varphi'^{2}(t) + \psi'^{2}(t)\rbrack}^{\frac{3}{2}}} {x=φ(t)y=ψ(t) ,k=[φ′2(t)+ψ′2(t)]23∣φ′(t)ψ′′(t)−φ′′(t)ψ′(t)∣
17.曲率半径
曲线在点 M M M处的曲率 k ( k ≠ 0 ) k(k \neq 0) k(k=0)与曲线在点 M M M处的曲率半径 ρ \rho ρ有如下关系: ρ = 1 k \rho = \frac{1}{k} ρ=k1
[]{#header-n246 .anchor}