视频地址:Golang深入理解GPM模型
思维导图:
思维导图:
在单机时代是没有多线程、多进程、协程这些概念的。早期的操作系统都是顺序执行
单进程的缺点有:
处于对CPU资源的利用,发展出多线程/多进程操作系统,采用时间片轮训算法
宏观上来说,就算只有一个cpu,也能并发执行
多个进程
这样的好处是充分利用了CPU,但是也带来了一些问题,例如时间片切换需要花费额外的开销
成本就越大
,也就越浪费
对于开发人员来说,尽管线程看起来很美好,但实际上多线程开发设计会变得更加复杂,要考虑很多同步竞争等问题,如锁
、竞争冲突
等
进程拥有太多的资源,进程的创建、切换、销毁
,都会占用很长的时间,CPU虽然利用起来了,但如果进程过多,CPU有很大的一部分都被用来进行进程调度
了
所以提高cpu的利用率成为我们需要解决的问题
既然问题出现在线程上下文切换
中,那么首先我们需要好好想一想什么是线程的上下文切换
我们知道操作系统的一些核心接口是不能被进程随意调度的,例如进行io流的读写操作
,需要将最终的执行权交给操作系统(内核态)进行调度,所以就会有用户态和内核态
之前的切换
这个时候我们的线程模型是这样的
一个线程需要在内核态
与用户态
之间进行切换,并且切换是受到操作系统控制的,可能这个现在需要等待多个时间片才能切换到内核态再调用操作系统底层的接口
那么我们是否可以用两个线程分别处理这两种状态呢?两个线程之间再
做好绑定
,当用户线程将任务提交给内核线程后,就可以不用堵塞
了,可以去执行其他的任务了
对于CPU来说(多核CPU),不需要关注线程切换的问题,只需要分配系统资源给内核线程
进行调度即可
我们来给用户线程
换个名字——协程(co-runtine)
如果是一比一
的关系的话,其实还是可能需要等待内核线程的执行
所以可以设计为N 比 1
的形式,多个协程可以将任务一股脑的交给内核线程去完成,但是这样又有问题,如果其中一个问题在提交任务的过程中,堵塞住了,就会影响其他线程的工作
这个就是python的event-loop
遇到的问题,一个阻塞,其余全阻塞
所以一般为M 比 N
的关系
在M 比 N
的关系中,大部分的精力都会放在协程调度器
上,如果调度器效率高就能让协程之间阻塞时间尽可能的少
在golang中对
协程调度器
和协程内存
进行了优化
- 协程调度器:可以支持灵活调度
- 内存轻量化:可以拥有大量的协程
在golang早期的协程调度器
中,采用的是队列
的方式,M
想要执行、放回G
都必须访问全局G队列
,并且M
有多个,即多线程访问同一资源需要加锁
进行保证互斥/同步
,所以全局G队列
是有互斥锁
进行保护的
老调度器有几个缺点:
激烈的锁竞争
延迟和额外的系统负载
。比如当G中包含创建新协程的时候,M创建了G'
,为了继续执行G
,需要把G'
交给M'
执行,也造成了很差的局部性
,因为G'
和G
是相关的,最好放在M上执行,而不是其他M'
思维导图:
GMP是goalng的线程模型,包含三个概念:内核线程(M),goroutine(G),G的上下文环境(P)
- G:
goroutine协程
,基于协程建立的用户态线程- M:
machine
,它直接关联一个os内核线程,用于执行G- P:
processor处理器
,P里面一般会存当前goroutine运行的上下文环境(函数指针,堆栈地址及地址边界),P会对自己管理的goroutine队列做一些调度
在Go中,线程是运行goroutine的实体,调度器的功能是把可运行的goroutine分配到工作线程上
G
G
,存的数量有限,不超过256
个。新建G'
时,G'
优先加入到P的本地队列,如果队列满了,则会把本地队列中一半的G
移动到全局队列P
都在程序启动时创建,并保存在数组中,最多有GOMAXPROCS
(可配置)个P
,从P的本地队列获取G
,P
队列为空时,M
也会尝试从全局队列
拿一批G
放到P
的本地队列,或从其他P
的本地队列一半放到自己P
的本地队列。M运行G,G执行之后,M会从P获取下一个G,不断重复下去P和M的数量问题
- P的数量:环境变量
$GOMAXPROCS
;在程序中通过runtime.GOMAXPROCS()
来设置- M的数量:GO语言本身限定
一万
(但是操作系统达不到);通过runtime/debug
包中的SetMaxThreads
函数来设置;有一个M阻塞
,会创建一个新的M
;如果有M空闲
,那么就会回收或者休眠
M与P的数量没有绝对关系,一个M阻塞,P就会去创建或者切换另一个M,所以,即使P的默认数量是1,也有可能会创建很多个M出来
golang调度器的设计策略思想主要有以下几点:
golang在复用线程上主要体现在work stealing机制
和hand off机制
(偷别人的去执行,和自己扔掉执行)
首先我们看work stealing
,我们在学习java的时候学过fork/join,其中也是通过工作窃取方式来提升效率,充分利用线程进行并行计算,并减少了线程间的竞争
干完活的线程与其等着,不如去帮其他线程干活,于是它就去其他线程的队列里窃取一个任务来执行。而在这时它们会访问同一个队列,所以为了减少窃取任务线程和被窃取任务线程之间的竞争,通常会使用双端队列
,被窃取任务
线程永远从双端队列的头部
拿任务执行,而窃取任务
的线程永远从双端队列的尾部
拿任务执行
hand off机制
当本线程因为G进行系统调用阻塞时,线程释放绑定的P,把P转移给其他空闲的线程执行,此时
M1
如果长时间阻塞,可能会执行睡眠或销毁
我们可以使用GOMAXPROCS
设置P的数量,这样的话最多有GOMAXPROCS
个线程分布在多个CPU上同时运行。GOMAXPROCS
也限制了并发的程度,比如GOMAXPROCS = 核数/2
,则最多利用了一半的CPU核进行并行
co-routine
主动释放后才能轮到下一个进行使用goroutine
使用10ms还没执行完,CPU资源就会被其他goroutine所抢占全局G队列其实是复用线程的补充,当工作窃取时,优先从全局队列去取,取不到才从别的p本地队列取(1.17版本)
在新的调度器中依然有全局G队列,但功能已经被弱化了,当M执行work stealing从其他P偷不到G时,它可以从全局G队列获取G
go func()
经历了那些过程go func()
来创建一个goroutineG
的队列,一个是局部调度器P
的本地队列、一个是全局G队列
。新创建的G会先保存在P的本地队列
中,如果P的本地队列已经满了就会保存在全局的队列
中M
必须持有一个P
,M与P是1:1
的关系。M会从P的本地队列弹出一个可执行状态的G
来执行,如果P的本地队列为空,就会想其他的MP组合偷取一个可执行的G来执行syscall
或者其他阻塞
操作,M会阻塞,如果当前有一些G在执行,runtime会把这个线程M从P中摘除(detach)
,然后再创建一个新的操作系统的线程(如果有空闲的线程可用就复用空闲线程)来服务于这个P空闲的P
执行,并放入到这个P的本地队列
。如果获取不到P,那么这个线程M变成休眠状态
, 加入到空闲线程
中,然后这个G会被放入全局队列
中在了解调度器生命周期之前,我们需要了解两个新的角色
M0
和G0
M0(跟进程数量绑定,一比一):
- 启动程序后
编号为0
的主线程- 在全局变量
runtime.m0
中,不需要在heap
上分配- 负责执行初始化操作和
启动第一个G
- 启动第一个G之后,
M0就和其他的M一样了
G0(每个M都会有一个G0):
- 每次
启动一个M
,都会第一个创建的gourtine
,就是G0
- G0仅用于
负责调度G
- G0不指向任何
可执行的函数
- 每个M都会有一个自己的G0
- 在调度或系统调用时会使用M切换到G0,再通过G0进行调度
M0和G0都是放在全局空间的
具体流程为:
我们来分析一段代码:
package main
import "fmt"
func main() {
fmt.Println("Hello world")
}
P
构成的P列表
。main.main
,runtime
中也有1个main函数——runtime.main
,代码经过编译后,runtime.main
会调用main.main
,程序启动时会为runtime.main
创建goroutine,称它为main goroutine吧,然后把main goroutine加入到P的本地队列。main.main
退出,runtime.main
执行Defer和Panic处理,或调用runtime.exit
退出程序。调度器的生命周期几乎占满了一个Go程序的一生,
runtime.main
的goroutine执行之前都是为调度器做准备工作,runtime.main
的goroutine运行,才是调度器的真正开始,直到runtime.main
结束而结束
在这里我们需要使用trace编程,三步走:
- 创建trace文件:f, err := os.Create(“trace.out”)
- 启动trace:err = trace.Start(f)
- 停止trace:trace.Stop()
然后再通过
go tool trace
工具打开trace文件go tool trace trace.out
package main
import (
"fmt"
"os"
"runtime/trace"
)
// trace的编码过程
// 1. 创建文件
// 2. 启动
// 3. 停止
func main() {
// 1.创建一个trace文件
f, err := os.Create("trace.out")
if err != nil {
panic(err)
}
defer func(f *os.File) {
err := f.Close()
if err != nil {
panic(err)
}
}(f)
// 2. 启动trace
err = trace.Start(f)
if err != nil {
panic(err)
}
// 正常要调试的业务
fmt.Println("hello GMP")
// 3. 停止trace
trace.Stop()
}
打开后我们进入网页点击view trace
,然后就能看到分析信息
G的信息:
M的信息:
P的信息:
使用debug方式可以不需要trace文件
先搞一段代码
package main
import (
"fmt"
"time"
)
func main() {
for i := 0; i < 5; i++ {
time.Sleep(time.Second)
fmt.Println("hello GMP")
}
}
debug执行一下
$ GODEBUG=schedtrace=1000 ./debug.exe
SCHED 0ms: gomaxprocs=8 idleprocs=7 threads=6 spinningthreads=0 idlethreads=3 runqueue=0 [0 0 0 0 0 0 0 0]
SCHED 1008ms: gomaxprocs=8 idleprocs=8 threads=6 spinningthreads=0 idlethreads=3 runqueue=0 [0 0 0 0 0 0 0 0]
hello GMP
SCHED 2009ms: gomaxprocs=8 idleprocs=8 threads=6 spinningthreads=0 idlethreads=3 runqueue=0 [0 0 0 0 0 0 0 0]
hello GMP
SCHED 3010ms: gomaxprocs=8 idleprocs=8 threads=6 spinningthreads=0 idlethreads=3 runqueue=0 [0 0 0 0 0 0 0 0]
hello GMP
hello GMP
SCHED 4017ms: gomaxprocs=8 idleprocs=8 threads=6 spinningthreads=0 idlethreads=3 runqueue=0 [0 0 0 0 0 0 0 0]
hello GMP
SCHED
:调试信息输出标志字符串,代表本行是goroutine调度器的输出;0ms
:即从程序启动到输出这行日志的时间;gomaxprocs
: P的数量,本例有2个P, 因为默认的P的属性是和cpu核心数量默认一致,当然也可以通过GOMAXPROCS来设置;idleprocs
: 处于idle状态的P的数量;通过gomaxprocs和idleprocs的差值,我们就可知道执行go代码的P的数量;threads: os threads/M
的数量,包含scheduler使用的m数量,加上runtime自用的类似sysmon这样的thread的数量;spinningthreads
: 处于自旋状态的os thread数量;idlethread
: 处于idle状态的os thread的数量;runqueue=0
: Scheduler全局队列中G的数量;[0 0]
: 分别为2个P的local queue中的G的数量。P拥有G1,M1获取P后开始运行G1,G1使用go func()
创建了G2,为了局部性G2优先加入到P1的本地队列
G1运行完成后(函数:goexit
),M上运行的goroutine切换为G0,G0负责调度时协程的切换(函数:schedule
)。从P的本地队列取G2,从G0切换到G2,并开始运行G2(函数:execute
)。实现了线程M1的复用
假设每个P的本地队列只能存3个G。G2要创建了6个G,前3个G(G3, G4, G5)已经加入p1的本地队列,p1本地队列满了
G2在创建G7的时候,发现P1的
本地队列
已满,需要执行负载均衡(把P1中本地队列中前一半的G,还有新创建G转移到全局队列)
- 移走前一半的
G
是为了防止后面G饥饿
这些G被转移到全局队列时,会被打乱顺序。所以G3,G4,G7被转移到全局队列。
G2创建G8时,P1的本地队列未满,所以G8会被加入到P1的本地队列
规定:在创建G时,运行的G会尝试唤醒其他空闲的P和M组合去执行
假定G2唤醒了M2,M2绑定了P2,并运行G0,但P2本地队列没有G,M2此时为
自旋线程
(没有G但为运行状态的线程,不断寻找G)
- 先从全局队列中获取,没有再从其他线程中偷取(先全后偷)
M2尝试从全局队列(简称“GQ”)取一批G放到P2的本地队列(函数:
findrunnable()
)。M2从全局队列取的G数量符合下面的公式:n = min(len(GQ) / GOMAXPROCS + 1, cap(LQ) / 2 )
- GQ:全局队列总长度(队列中现在元素的个数)
- GOMAXPROCS:p的个数
至少从全局队列取1个g,但每次不要从全局队列移动太多的g到p本地队列,给其他p留点。这是从全局队列到P本地队列的负载均衡
假定我们场景中一共有4个P(GOMAXPROCS设置为4,那么我们允许最多就能用4个P来供M使用)。所以M2只从能从全局队列取1个G(即G3)移动P2本地队列,然后完成从G0到G3的切换,运行G3
当M2有了新的G(不再是G0),便不是自旋线程
了
相关源码参考:
// 从全局队列中偷取,调用时必须锁住调度器
func globrunqget(_p_ *p, max int32) *g {
// 如果全局队列中没有 g 直接返回
if sched.runqsize == 0 {
return nil
}
// per-P 的部分,如果只有一个 P 的全部取
n := sched.runqsize/gomaxprocs + 1
if n > sched.runqsize {
n = sched.runqsize
}
// 不能超过取的最大个数
if max > 0 && n > max {
n = max
}
// 计算能不能在本地队列中放下 n 个
if n > int32(len(_p_.runq))/2 {
n = int32(len(_p_.runq)) / 2
}
// 修改本地队列的剩余空间
sched.runqsize -= n
// 拿到全局队列队头 g
gp := sched.runq.pop()
// 计数
n--
// 继续取剩下的 n-1 个全局队列放入本地队列
for ; n > 0; n-- {
gp1 := sched.runq.pop()
runqput(_p_, gp1, false)
}
return gp
}
全局队列已经没有G,那m就要执行work stealing(偷取):从其他有G的P哪里偷取一半G过来,放到自己的P本地队列。P2从P1的本地队列尾部取一半的G,本例中一半则只有1个G8,放到P2的本地队列并执行。
- 偷取队列元素的一半
G1本地队列G5、G6已经被其他M偷走并运行完成,当前M1和M2分别在运行G2和G8,M3和M4没有goroutine可以运行,M3和M4处于自旋状态,它们不断寻找goroutine
- 正在运行的M + 自旋线程 <= GOMAXPROCS
- 如果M大于P,则进入休眠线程队列
GOMAXPROCS
个自旋的线程(当前例子中的GOMAXPROCS
=4,所以一共4个P),多余的没事做线程会让他们休眠。假定当前除了M3和M4为自旋线程,还有M5和M6为空闲的线程(没有得到P的绑定,注意我们这里最多就只能够存在4个P,所以P的数量应该永远是M>=P,大部分都是M在抢占需要运行的P),G8创建了G9,G8进行了阻塞的系统调用,M2和P2立即解绑,P2会执行以下判断:如果P2本地队列有G、全局队列有G或有空闲的M,P2都会立马唤醒1个M和它绑定,否则P2则会加入到空闲P列表,等待M来获取可用的p。本场景中,P2本地队列有G9,可以和其他空闲的线程M5绑定
- 自旋线程抢占G,不抢占P
上述G8
如果执行完毕,此时M2会首先寻找之前的P,如果没有则尝试从空闲p队列
中获取,如果没获取不到,会进入M阻塞队列
中(长时间休眠等待GC回收销毁)