一文带你深入了解算法笔记中的前缀与差分(附源码)

一文带你深入了解算法笔记中的前缀与差分(附源码)_第1张图片

作者介绍:22级树莓人(计算机专业),热爱编程<目前在c++阶段,因为最近参加新星计划算法赛道(白佬),所以加快了脚步,果然急迫感会增加动力>——目标Windows,MySQL,Qt,数据结构与算法,Linux,多线程,会持续分享学习成果和小项目的
作者主页:热爱编程的小K
专栏链接:算法笔记

欢迎各位→点赞 + 收藏 + 留言​
总结:希望你看完之后,能对你有所帮助,不足请指正!共同学习交流

在这里插入图片描述

文章目录

      • 一、前缀和
        • A、一维前缀和
          • 1、什么是一维前缀和
          • 2、一维前缀和的作用
          • 3、习题:Acwing 795. 前缀和
            • 输入格式
            • 输出格式
            • 数据范围
            • 输入样例:
            • 输出样例:
          • 4、代码详解
        • B、二维前缀和(矩阵和)
          • 1、二维前缀和推导
          • 2、习题:Acwing 796. 子矩阵的和
            • 输入格式
            • 输出格式
            • 数据范围
            • 输入样例:
            • 输出样例:
          • 3、代码详解
      • 二、差分
        • A、一维差分
          • 1、什么是差分
          • 2、如何构建差分数组
          • 3、差分数组有什么作用
          • 4、练习 Acwing 797. 差分
            • 输入格式
            • 输出格式
            • 数据范围
            • 输入样例:
            • 输出样例:
          • 5、代码详解
        • B、二维差分(差分矩阵)
          • 3、习题:Acwing 798. 差分矩阵
            • 输入格式
            • 输出格式
            • 数据范围
            • 输入样例:
            • 输出样例:
          • 4、代码详解


一、前缀和

A、一维前缀和

1、什么是一维前缀和

原数组: a[1], a[2], a[3], a[4], a[5], …, a[n]
前缀和 S[i]为数组的前 i项和
前缀和: S[i] = a[1] + a[2] + a[3] + … + a[i]

注意前缀和的下标一定要从 1开始, 避免进行下标的转换,即定义S[0]等于0

2、一维前缀和的作用

快速求出元素组中某段区间的和

例如要求出l-r区间的和,则只需要执行sum[r]-sum[l-1]

原理如下:

sum[r] = a[1] + a[2] + a[3] + a[l-1] + a[l] + a[l+1] ...... a[r]; sum[l - 1] = a[1] + a[2] + a[3] + a[l - 1]; sum[r] - sum[l - 1] = a[l] + a[l + 1]+......+ a[r];

并且时间复杂度为O(1)

3、习题:Acwing 795. 前缀和

输入一个长度为 n的整数序列。

接下来再输入 m个询问,每个询问输入一对 l,r。

对于每个询问,输出原序列中从第 l个数到第 r个数的和

输入格式

第一行包含两个整数 n和 m。

第二行包含 n个整数,表示整数数列。

接下来 m 行,每行包含两个整数 l和 r,表示一个询问的区间范围。

输出格式

共 m行,每行输出一个询问的结果。

数据范围

1≤l≤r≤n
1≤n,m≤100000
−1000≤数列中元素的值≤1000

输入样例:
5 3
2 1 3 6 4
1 2
1 3
2 4
输出样例:
3
6
10
4、代码详解
#include
using namespace std;
const int N=1e5+10;
int a[N],sum[N];  //原数组与求和数组
int main()
{
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        sum[i]=sum[i-1]+a[i];   //构建前缀和
    }
    while(m--)
    {
        int L,R;
        cin>>L>>R;
        cout<

B、二维前缀和(矩阵和)

1、二维前缀和推导

在这里插入图片描述

从上图我们很容易得到:图1的面积=图二的面积+图三的面积+图四的面积-图五的面积(重复的面积)

所以我们得出二维前缀和的预处理公式:s[i][j]=s[i-1][j]+s[i][j-1]+a[i][j]-s[i-1][j-1]


接下来回归问题去求以(x1,y1)为左上角和以(x2,y2)为右下角的矩阵的元素的和。

如图:

一文带你深入了解算法笔记中的前缀与差分(附源码)_第2张图片

不难看出绿色的面积=s[x2][y2]+s[x2][y1-1]+s[x1-1][y2]-s[x1-1][y1-1]

且时间复杂度也为O(1)

2、习题:Acwing 796. 子矩阵的和

输入一个 n行 m列的整数矩阵,再输入 q个询问,每个询问包含四个整数 x1,y1,x2,y2,表示一个子矩阵的左上角坐标和右下角坐标。对于每个询问输出子矩阵中所有数的和。

输入格式

第一行包含三个整数 n,m,q。

接下来 n行,每行包含 m个整数,表示整数矩阵。

接下来 q行,每行包含四个整数 x1,y1,x2,y2,表示一组询问。

输出格式

共 q 行,每行输出一个询问的结果。

数据范围

1≤n,m≤1000
1≤q≤200000
1≤x1≤x2≤n
1≤y1≤y2≤m
−1000≤矩阵内元素的值≤1000

输入样例:
3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4
输出样例:
17
27
21
3、代码详解
#include
using namespace std;
const int N=1010;
int a[N][N],s[N][N];
int main()
{
    int n,m,q;
    cin>>n>>m>>q;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++){
            scanf("%d",&a[i][j]);
            //构建前缀和
            s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+a[i][j]; 
        }
    while(q--)
    {
        int x1,y1,x2,y2;
        scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
        //求并输出矩形前缀和
        cout<

二、差分

A、一维差分

1、什么是差分

类似于数学中的求导和积分,差分可以看成前缀和的逆运算。

这里举一个例子:

先给一个原数组aa[1]、a[2]、a[3]、a[4]、a[5]...a[n]

然后这里再构建一个数组b:b[1]、b[2]、b[3]...b[n]

使得:a[i]=b[1]+b[2]+b[3]...b[i]

即a是b的前缀和,反过来b就是a的差分

2、如何构建差分数组

这里我们采取最暴力的做法,直接构造,并且需要注意下标,所以我们这里还是令a[0]=0

注意:下面的构造中,a为前缀和数组,b为差分数组

a[0]=0;
b[1]=a[1]-a[0];
b[2]=a[2]-a[1];
......
b[i]=a[i]-a[i-1];
3、差分数组有什么作用

我们先来看一个问题

给定区间[l ,r ],让我们把a数组中的[ l, r]区间中的每一个数都加上c,即 a[l] + c , a[l+1] + c , a[l+2] + c ,,,,,, a[r] + c;

暴力做法是for循环l到r区间,时间复杂度O(n),如果我们需要对原数组执行m次这样的操作,时间复杂度就会变成O(n * m)。 这个时候就体现出差分的作用了,让我们往下接着看

我们知道a是b的前缀和数组,所以改变b的一项就会改变a中有b的所有项

但是在有边界之外的也多加上一个C,如图所示

一文带你深入了解算法笔记中的前缀与差分(附源码)_第3张图片

所以这里我们需要执行两步操作

b[l]+=c;

b[r+1]-=c;

因此我们得出一维差分结论:给a数组中的[ l, r]区间中的每一个数都加上c,只需对差分数组b做 b[l] + = c, b[r+1] - = c。时间复杂度为O(1), 大大提高了效率。

4、练习 Acwing 797. 差分

输入一个长度为 n 的整数序列。接下来输入 m个操作,每个操作包含三个整数 l,r,c,表示将序列中 [l,r]之间的每个数加上 c。请你输出进行完所有操作后的序列

输入格式

第一行包含两个整数 n和 m。

第二行包含 n个整数,表示整数序列。

接下来 m行,每行包含三个整数 l,r,c,表示一个操作。

输出格式

共一行,包含 n个整数,表示最终序列。

数据范围

1≤n,m≤100000
1≤l≤r≤n
−1000≤c≤1000
−1000≤整数序列中元素的值≤1000

输入样例:
6 3
1 2 2 1 2 1
1 3 1
3 5 1
1 6 1
输出样例:
3 4 5 3 4 2
5、代码详解

注意使用scanf进行输入,效率比较高

#include
using namespace std;
const int N = 1e5 + 10;
int a[N], b[N];
int main()
{
    int n, m;
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++)
    {
        scanf("%d", &a[i]);
        b[i] = a[i] - a[i - 1];      //构建差分数组
    }
    int l, r, c;
    while (m--)
    {
        scanf("%d%d%d", &l, &r, &c);
        b[l] += c;       //将序列中[l, r]之间的每个数都加上c
        b[r + 1] -= c;
    }
    for (int i = 1; i <= n; i++)
    {
        a[i] = b[i] + a[i - 1];    //前缀和运算
        printf("%d ", a[i]);
    }
    return 0;
}

B、二维差分(差分矩阵)

类似于前面的二维前缀和,这里引用大佬林小鹿的图解

一文带你深入了解算法笔记中的前缀与差分(附源码)_第4张图片

所以要执行四步操作:

b[x1][y1] += c;

b[x1][y2+1] -= c;

b[x2+1][y1] -= c;

b[x2+1][y2+1] += c;

3、习题:Acwing 798. 差分矩阵

输入一个 n行 m列的整数矩阵,再输入 q 个操作,每个操作包含五个整数 x1,y1,x2,y2,c,其中 (x1,y1)和 (x2,y2) 表示一个子矩阵的左上角坐标和右下角坐标。每个操作都要将选中的子矩阵中的每个元素的值加上 c。请你将进行完所有操作后的矩阵输出。

输入格式

第一行包含整数 n,m,q。

接下来 n行,每行包含 m个整数,表示整数矩阵。

接下来 q行,每行包含 55 个整数 x1,y1,x2,y2,c,表示一个操作。

输出格式

共 n行,每行 m个整数,表示所有操作进行完毕后的最终矩阵。

数据范围

1≤n,m≤1000
1≤q≤100000,
1≤x1≤x2≤n
1≤y1≤y2≤m
−1000≤c≤1000
−1000≤矩阵内元素的值≤1000

输入样例:
3 4 3
1 2 2 1
3 2 2 1
1 1 1 1
1 1 2 2 1
1 3 2 3 2
3 1 3 4 1
输出样例:
2 3 4 1
4 3 4 1
2 2 2 2
4、代码详解
#include
using namespace std;
const int N=1010;
int a[N][N],s[N][N];
int main()
{
    int n,m,q;
    cin>>n>>m>>q;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            scanf("%d",&s[i][j]);
    //构建差分矩阵
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            a[i][j]=s[i][j]-s[i][j-1]-s[i-1][j]+s[i-1][j-1]; 
    while(q--)
    {
        int x1,y1,x2,y2,c;
        scanf("%d%d%d%d%d",&x1,&y1,&x2,&y2,&c);
        a[x1][y1]+=c;
        a[x1][y2+1]-=c;
        a[x2+1][y1]-=c;
        a[x2+1][y2+1]+=c;
    }
    //求和
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
           s[i][j] = a[i][j] + s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1];
    for (int i = 1; i <= n; i ++ )
    {
        for (int j = 1; j <= m; j ++ ) 
        printf("%d ", s[i][j]);
        cout << endl;
    }
    return 0;
}

你可能感兴趣的:(算法笔记(c++,c),算法,数据结构,c++)