Tensorflow利用其可视化工具tensorboard可视化神经网络

Tensorflow利用其可视化工具tensorboard可视化神经网络

 参考莫烦的B站教程20,利用tensorflow自带的可视化工具tensorboard,在Google浏览器上进行了简单神网路的可视化。

一、将神经网络的结构可视化。

例子代码如下(spyder(tensorflow)编辑):

 
  1.  

    Created on Mon Sep 17 18:37:22 2018
     
    @author: Administrator
    """
    # -*- coding: utf-8 -*-
    """
    Created on Thu Sep 13 19:36:15 2018
    莫烦B站的教学视频P16的例子。拟合一个二次函数。构建了一个隐藏层含有具有十个神经元的三层神经网络。激励函数用的relu
    本次主要是演示将神经网络架构在tensorboard上进行可视化。
    @author: Administrator
    """
    import tensorflow as tf
    #import matplotlib.pyplot as plt#首先加载可视化模块
    def add_layer(inputs,in_size,out_size,activation_function=None):#None的话,默认就是线性函数
        with tf.name_scope('layer'):
            with tf.name_scope('weights'):
                Weights=tf.Variable(tf.random_normal([in_size,out_size]),name='W')#生成In_size行和out_size列的矩阵。代表权重矩阵。
            with tf.name_scope('biases'):
                biases=tf.Variable(tf.zeros([1,out_size])+0.1,name='b')
            with tf.name_scope('Wx_plus_b'):
                Wx_plus_b=tf.matmul(inputs,Weights)+biases#预测出来的还没有被激活的值存储在这个变量中。
            if activation_function is None:
                outputs=Wx_plus_b  
            else:
                outputs=activation_function(Wx_plus_b)
            return outputs#outputs是add_layer的输出值。
    #define placeholder for inputs to network.
    with tf.name_scope('inputs'):#input 包含了x和Y的input
        xs=tf.placeholder(tf.float32,[None,1],name='x_input')#1是x_data的属性为1.None指无论给多少个例子都ok。
        ys=tf.placeholder(tf.float32,[None,1],name='y_input')
    #开始建造第一层layer。典型的三层神经网络:输入层(有多少个输入的x_data就有多少个神经元,本例中,只有一个属性,所以只有一个神经元输入),假设10个神经元的隐藏层,输出层。
    #由于在使用relu,该代码就是用十条线段拟合一个抛物线。
    l1=add_layer(xs,1,10,activation_function=tf.nn.relu)#L1仅是单隐藏层,全连接网络。
    #再定义一个输出层,即:prediction
    #add_layer的输出值是l1,把l1放在prediction的input。input的size就是隐藏层的size:10.output的size就是y_data的size就是1.
    prediction=add_layer(l1,10,1,activation_function=None)
    with tf.name_scope('loss'):
        loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),
                               reduction_indices=[1]))#reduction_indices=[1]:按行求和。reduction_indices=[0]按列求和。sum是将所有例子求和,再求平均(mean)。
    with tf.name_scope('train'):
    #通过训练学习。提升误差。
        train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)#以0.1的学习效率来训练学习,来减小loss。
    sess=tf.Session()
    writer=tf.summary.FileWriter('logs',sess.graph)#把图片load到log的文件夹里,在浏览器里浏览。
    #important step
    sess.run(tf.global_variables_initializer())

     

期间,需要注意的是:

@1、将代码run之后,创建的log文件被放在了spyer的.py文件的默认保存位置。因此下一步在cmd上执行:

”tensorboard --logdir=logs“(win10平台上需要这样写,而不是logdir='logs/')时,需要将cmd的工作路径改到“log”文件所在的上一级。

@2、根据给出的地址即at后面的地址,copy到Google浏览器ernter后,会进入到tensorboard的在线界面:

二、将各个值以及Loss的变化曲线可视化。示例代码如下:

# -*- coding: utf-8 -*-
"""
Created on Mon Sep 17 18:37:22 2018
@author: Administrator
"""
 
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 13 19:36:15 2018
莫烦B站的教学视频P16的例子。拟合一个二次函数。构建了一个隐藏层含有具有十个神经元的三层神经网络。激励函数用的relu
本次主要是演示将神经网络运行时候内部的参数以及Loss的变化曲线在tensorboard上进行可视化。
@author: Administrator
"""
 
import tensorflow as tf
#import matplotlib.pyplot as plt#首先加载可视化模块
import numpy as np
 
def add_layer(inputs,in_size,out_size,n_layer,activation_function=None):#None的话,默认就是线性函数
    #add one more layer and return the output of this layer
    layer_name='layer%s'%n_layer
    with tf.name_scope(layer_name):
        with tf.name_scope('weights'):
            Weights=tf.Variable(tf.random_normal([in_size,out_size]),name='W')#生成In_size行和out_size列的矩阵。代表权重矩阵。
            tf.summary.histogram(layer_name+'/weights',Weights)
        with tf.name_scope('biases'):
            biases=tf.Variable(tf.zeros([1,out_size])+0.1,name='b')
            tf.summary.histogram(layer_name+'/biases',biases)
        with tf.name_scope('Wx_plus_b'):
            Wx_plus_b=tf.matmul(inputs,Weights)+biases#预测出来的还没有被激活的值存储在这个变量中。
        if activation_function is None:
            outputs=Wx_plus_b  
        else:
            outputs=activation_function(Wx_plus_b)
        tf.summary.histogram(layer_name+'/outputs',outputs)
        return outputs#outputs是add_layer的输出值。
#define placeholder for inputs to network.
#make up some real data
x_data=np.linspace(-1,1,300)[:,np.newaxis]
noise=np.random.normal(0,0.05,x_data.shape)
y_data=np.square(x_data)-0.5+noise
with tf.name_scope('inputs'):#input 包含了x和Y的input
    xs=tf.placeholder(tf.float32,[None,1],name='x_input')#1是x_data的属性为1.None指无论给多少个例子都ok。
    ys=tf.placeholder(tf.float32,[None,1],name='y_input')
 
#开始建造第一层layer。典型的三层神经网络:输入层(有多少个输入的x_data就有多少个神经元,本例中,只有一个属性,所以只有一个神经元输入),假设10个神经元的隐藏层,输出层。
#由于在使用relu,该代码就是用十条线段拟合一个抛物线。
l1=add_layer(xs,1,10,n_layer=1,activation_function=tf.nn.relu)#L1仅是单隐藏层,全连接网络。
 
#再定义一个输出层,即:prediction
#add_layer的输出值是l1,把l1放在prediction的input。input的size就是隐藏层的size:10.output的size就是y_data的size就是1.
prediction=add_layer(l1,10,1,n_layer=2,activation_function=None)
with tf.name_scope('loss'):
    loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),
                           reduction_indices=[1]))#reduction_indices=[1]:按行求和。reduction_indices=[0]按列求和。sum是将所有例子求和,再求平均(mean)。
    tf.summary.scalar('loss',loss)#loss这里要用scalar。如果是在减小,说明学到东西了。
with tf.name_scope('train'):
#通过训练学习。提升误差。
    train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)#以0.1的学习效率来训练学习,来减小loss。
sess=tf.Session()
merged=tf.summary.merge_all()
writer=tf.summary.FileWriter('logs',sess.graph)#把图片load到log的文件夹里,在浏览器里浏览。
#important step
sess.run(tf.global_variables_initializer())
for i in range(500):
     sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
     if i%50==0:
         result=sess.run(merged,
                         feed_dict={xs:x_data,ys:y_data})
         writer.add_summary(result,i)

期间遇到如下问题:

@1、因tensorflow版本原因,很多函数不一样,报错。大概总结如下:

https://blog.csdn.net/s_sunnyy/article/details/70999462

>> tf.merge_all_summaries() 改为: tf.summary.merge_all()

>> tf.train.SummaryWriter 改为:tf.summary.FileWriter

>> tf.scalar_summary 改为:tf.summary.scalar

>> histogram_summary 改为:tf.summary.histogram

@2、在cmd终端运行tensorboard时,又出现了错误:

AttributeError: 'SummaryMetadata' object has no attribute 'display_name' 

于是,进行了tensorflow版本的升级。首先查看tensorflow版本:

activate tensorflow------>python然后:

----->import tensorflow as tf 

tf.__version__

查看之后,再回到anconda环境下执行命令:pip install --ignore-installed --upgrade tensorflow-gpu

进行tensorfllow的升级。

@3、升级之后,再尝试,终端又提示:

于是,又下载了CUDA9.0及其补丁。注先安装1.3G的,再按顺序安装其余4个补丁。由于之前安装的是8.0版本的CUDA,在安装9.0的1.3G最后一步提示我说要先卸载Nsight8.0版本的,于是又从控制面板只将Nsigt8.0卸载了(没敢卸载别的8.0文件,怕又卸载错了东西,因为之前在笔记本上安装tensorflow的时候,在安装CUDA过程中反复失败,为此已经重装了三回系统,浪费了一天半的时间~_~,现在一到这一步就紧张,嘴里默念千万遍,‘千万要顺利’。。)另外,因升级了CUDA tookit版本,必须要去下载对应的cuDNN7版本才可以,于是在https://developer.nvidia.com/rdp/cudnn-download下载安装完成。

  一切准备就绪之后,怀着忐忑而又激动的心情再次尝试,又出现了错误提示说,大致是因为版本升级的缘故,命令格式有了变化。要这样写才可以:tensorboard --logdir=project/ ,其中,project是logs文件夹所处的文件夹名称。截图如下:

  因为在logs文件夹里存在多个event_log所以,才会出现那么多文字“BLABLA...”,之后没在Google浏览器中打开@的网址,结果如下:

颜色越深的地方表示该处值越多,反之,颜色越浅的地方,值越少。

 

你可能感兴趣的:(Python学习,tensorflow,Tensorflow,可视化神经网络,tensorboard,可视化工具)