使用非对称数据进行MR到CT的图像生成 Deep MR to CT Synthesis using Unpaired Data 2019-09-05

作者采用cycle-GAN的思想进行MR和CT图像的模态转换。利用循环一致性实现在非对称数据下图像的模态转换。

损失


方法

backward cycle
评价指标

1)mean absolute error



2)peak-signal-to-noise-ratio (PSNR)


实验结果
Fig. 4: From left to right Input MR image, synthesized CT image, reference real CT image, and absolute error between real and synthesized CT image.

Fig. 5: From left to right Input MR image, synthesized CT image with paired training, synthesized CT image with unpaired training, reference real CT image.

Fig. 6: From left to right Input MR image, synthesized CT image, reconstructed MR image, and relative error between the input and reconstructed MR image

你可能感兴趣的:(使用非对称数据进行MR到CT的图像生成 Deep MR to CT Synthesis using Unpaired Data 2019-09-05)