第八章 Flink集成Iceberg的DataStreamAPI、TableSQLAPI详解


第八章 Flink集成Iceberg的DataStreamAPI、TableSQLAPI详解_第1张图片


1、概述

​ 目前Flink支持使用DataStream API 和SQL API方式实时读取和写入I=ceberg表,建议使用SQL API方式实时读取和写入Iceberg表。

  • Iceberg支持的Flink版本为1.11.x版本以上,以下为版本匹配关系
Flink版本 Iceberg版本 备注
Flink1.11.X Iceberg0.11.1
Flink1.12.x ~ Flink1.13.x Iceberg0.12.1 SQL API有Bug
Flink1.14.x Iceberg0.12.1 SQL API有Bug

​ 本次学习以Flink和Iceberg整合使用Flink版本为1.14.5,Iceberg版本为0.12.1版本

2、DataStream API

2.1、实时写入Iceberg表

2.1.1、导入依赖

<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0modelVersion>

    <groupId>org.examplegroupId>
    <artifactId>flinkiceberg1artifactId>
    <version>1.0-SNAPSHOTversion>

    <properties>
        <project.build.sourceEncoding>UTF-8project.build.sourceEncoding>
        <maven.compiler.source>1.8maven.compiler.source>
        <maven.compiler.target>1.8maven.compiler.target>
        
        <flink.version>1.13.5flink.version>
        
        
        
        
        <hadoop.version>3.1.1hadoop.version>
    properties>
    <dependencies>
        <dependency>
            <groupId>com.alibaba.ververicagroupId>
            <artifactId>ververica-connector-icebergartifactId>
            <version>1.13-vvr-4.0.7version>
            <exclusions>
                <exclusion>
                    <groupId>com.google.guavagroupId>
                    <artifactId>guava-parentartifactId>
                exclusion>
            exclusions>
        dependency>
        
        <dependency>
            <groupId>org.apache.iceberggroupId>
            <artifactId>iceberg-flink-runtimeartifactId>
            <version>0.12.1version>
            
        dependency>
        
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-javaartifactId>
            <version>${flink.version}version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-streaming-java_2.11artifactId>
            <version>${flink.version}version>
        dependency>

        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-clients_2.11artifactId>
            <version>${flink.version}version>
        dependency>

        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-streaming-scala_2.11artifactId>
            <version>${flink.version}version>
        dependency>

        
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-connector-kafka_2.11artifactId>
            <version>${flink.version}version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-connector-baseartifactId>
            <version>${flink.version}version>
        dependency>

        
        <dependency>
            <groupId>org.apache.hadoopgroupId>
            <artifactId>hadoop-clientartifactId>
            <version>${hadoop.version}version>
            <exclusions>
                <exclusion>
                    <artifactId>guavaartifactId>
                    <groupId>com.google.guavagroupId>
                exclusion>
            exclusions>
        dependency>

        
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-table-runtime-blink_2.11artifactId>
            <version>${flink.version}version>
        dependency>

        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-tableartifactId>
            <version>${flink.version}version>
        dependency>

        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-table-commonartifactId>
            <version>${flink.version}version>
        dependency>

        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-table-api-javaartifactId>
            <version>${flink.version}version>
        dependency>
        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-table-api-java-bridge_2.11artifactId>
            <version>${flink.version}version>
        dependency>

        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-table-planner_2.11artifactId>
            <version>${flink.version}version>
        dependency>

        <dependency>
            <groupId>org.apache.flinkgroupId>
            <artifactId>flink-table-planner-blink_2.11artifactId>
            <version>${flink.version}version>
        dependency>

        <dependency>
            <groupId>junitgroupId>
            <artifactId>junitartifactId>
            <version>4.11version>
            <scope>testscope>
        dependency>

        
        <dependency>
            <groupId>org.slf4jgroupId>
            <artifactId>slf4j-log4j12artifactId>
            <version>1.7.25version>
            <scope>testscope>
        dependency>
        <dependency>
            <groupId>log4jgroupId>
            <artifactId>log4jartifactId>
            <version>1.2.17version>
        dependency>
        <dependency>
            <groupId>org.slf4jgroupId>
            <artifactId>slf4j-apiartifactId>
            <version>1.7.25version>
        dependency>
        <dependency>
            <groupId>org.slf4jgroupId>
            <artifactId>slf4j-nopartifactId>
            <version>1.7.25version>
            <scope>testscope>
        dependency>
        <dependency>
            <groupId>org.slf4jgroupId>
            <artifactId>slf4j-simpleartifactId>
            <version>1.7.5version>
        dependency>
    dependencies>


project>
2.1.2、创建Iceberg表
  • 核心:通过Flink创建Iceberg表
-- 1、创建catalog
 CREATE CATALOG hadoop_catalog WITH (
>   'type'='iceberg',
>   'catalog-type'='hadoop',
>   'warehouse'='hdfs://leidi01:8020/iceberg_catalog',
>   'property-version'='1'
> );

-- 2、创建databases
create database flink_iceberg;

-- 3、创建Sink表
CREATE TABLE hadoop_catalog.flink_iceberg.icebergdemo1 (
    id STRING,
    data STRING
); 
  • 运行结果

第八章 Flink集成Iceberg的DataStreamAPI、TableSQLAPI详解_第2张图片

2.1.3、代码实现
public class FlinkIcebergDemo1 {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //1.必须设置checkpoint ,Flink向Iceberg中写入数据时当checkpoint发生后,才会commit数据。
        env.enableCheckpointing(5000);

        //2.读取Kafka 中的topic 数据
        KafkaSource<String> source = KafkaSource.<String>builder()
                .setBootstrapServers("192.168.6.102:6667")
                .setTopics("json")
                .setGroupId("my-group-id")
                .setStartingOffsets(OffsetsInitializer.latest())
                .setValueOnlyDeserializer(new SimpleStringSchema())
                .build();
        DataStreamSource<String> kafkaSource = env.fromSource(source, WatermarkStrategy.noWatermarks(), "Kafka Source");

        //3.对数据进行处理,包装成RowData 对象,方便保存到Iceberg表中。
        SingleOutputStreamOperator<RowData> dataStream = kafkaSource.map(new MapFunction<String, RowData>() {
            @Override
            public RowData map(String s) throws Exception {
                System.out.println("s = "+s);
                String[] split = s.split(",");
                GenericRowData row = new GenericRowData(4);
                row.setField(0, Integer.valueOf(split[0]));
                row.setField(1, StringData.fromString(split[1]));
                row.setField(2, Integer.valueOf(split[2]));
                row.setField(3, StringData.fromString(split[3]));
                return row;
            }
        });

        //4.创建Hadoop配置、Catalog配置和表的Schema,方便后续向路径写数据时可以找到对应的表
        Configuration hadoopConf = new Configuration();
        Catalog catalog = new HadoopCatalog(hadoopConf,"hdfs://leidi01:8020/flinkiceberg/");

        //配置iceberg 库名和表名
        TableIdentifier name =
                TableIdentifier.of("icebergdb", "flink_iceberg_tbl");

        //创建Icebeng表Schema
        Schema schema = new Schema(
                Types.NestedField.required(1, "id", Types.IntegerType.get()),
                Types.NestedField.required(2, "nane", Types.StringType.get()),
                Types.NestedField.required(3, "age", Types.IntegerType.get()),
                Types.NestedField.required(4, "loc", Types.StringType.get()));

        //如果有分区指定对应分区,这里“loc”列为分区列,可以指定unpartitioned 方法不设置表分区
//        PartitionSpec spec = PartitionSpec.unpartitioned();
        PartitionSpec spec = PartitionSpec.builderFor(schema).identity("loc").build();

        //指定Iceberg表数据格式化为Parquet存储
        Map<String, String> props =
                ImmutableMap.of(TableProperties.DEFAULT_FILE_FORMAT, FileFormat.PARQUET.name());
        Table table = null;

        // 通过catalog判断表是否存在,不存在就创建,存在就加载
        if (!catalog.tableExists(name)) {
            table = catalog.createTable(name, schema, spec, props);
        }else {
            table = catalog.loadTable(name);
        }

        TableLoader tableLoader = TableLoader.fromHadoopTable("hdfs://leidi01:8020/flinkiceberg//icebergdb/flink_iceberg_tbl", hadoopConf);

        //5.通过DataStream Api 向Iceberg中写入数据
        FlinkSink.forRowData(dataStream)
                //这个 .table 也可以不写,指定tableLoader 对应的路径就可以。
                .table(table)
                .tableLoader(tableLoader)
                //默认为false,追加数据。如果设置为true 就是覆盖数据
                .overwrite(false)
                .build();

        env.execute("DataStream Api Write Data To Iceberg");
    }
}
  • 注意事项:

(1)需要设置Checkpoint,Flink向Iceberg中写入Commit数据时,只有Checkpoint成功之后才会Commit数据,否则后期在Hive中查询不到数据

(2)读取Kafka数据后需要包装成RowData或者Row对象,才能向Iceberg表中写出数据。写出数据时默认是追加数据,如果指定overwrite就是全部覆盖数据。

(3)在向Iceberg表中写数据之前需要创建对应的Catalog、表Schema,否则写出时只指定对应的路径会报错找不到对应的Iceberg表。

(4)不建议使用DataStream API 向Iceberg中写数据,建议使用SQL API。

2.1.4、Kafka消费者启动
bin/kafka-console-producer.sh --topic json  --broker-list leidi01:6667

bin/kafka-console-consumer.sh --bootstrap-server  leidi01:6667 --topic json --from-beginning
  • 生产数据

在这里插入图片描述

  • 运行结果:data中有两个分区

第八章 Flink集成Iceberg的DataStreamAPI、TableSQLAPI详解_第3张图片

2.1.5、查询表结果
  • 说明:在Flink SQL中创建Hadoop Catalog
-- 1、创建Hadoop Catalog
CREATE CATALOG flinkiceberg WITH (
    'type'='iceberg',
    'catalog-type'='hadoop',
    'warehouse'='hdfs://leidi01:8020/flinkiceberg/',
    'property-version'='1'
);

-- 2、查询表中数据
use catalog flinkiceberg;
use icebergdb;
select * from flink_iceberg_tbl;
  • 运行结果

在这里插入图片描述

2.2、批量/实时读取Iceberg表

  • 核心:DataStream API 读取Iceberg表又分为批量读取和实时读取,通过方法“streaming(true/false)”来控制。
2.2.1、批量读取
  • 说明:设置方法“streaming(false)
  • 代码实现
public class FlinkIcebergRead {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        //1.配置TableLoader
        Configuration hadoopConf = new Configuration();
        TableLoader tableLoader = TableLoader.fromHadoopTable("hdfs://leidi01:8020/flinkiceberg//icebergdb/flink_iceberg_tbl", hadoopConf);

        //2.从Iceberg中读取全量/增量读取数据
        DataStream<RowData> batchData = FlinkSource.forRowData().env(env)
                .tableLoader(tableLoader)
                //默认为false,整批次读取,设置为true 为流式读取
                .streaming(false)
                .build();

        batchData.map(new MapFunction<RowData, String>() {
            @Override
            public String map(RowData rowData) throws Exception {
                int id = rowData.getInt(0);
                String name = rowData.getString(1).toString();
                int age = rowData.getInt(2);
                String loc = rowData.getString(3).toString();
                return id+","+name+","+age+","+loc;
            }
        }).print();

        env.execute("DataStream Api Read Data From Iceberg");

    }
}
  • 运行结果

在这里插入图片描述

2.2.2、实时读取
  • 说明:设置方法“streaming(true)

  • 代码实现

DataStream<RowData> batchData = FlinkSource.forRowData().env(env)
    .tableLoader(tableLoader)
    //默认为false,整批次读取,设置为true 为流式读取
    .streaming(true)
    .build();
  • Flink SQL插入数据
insert into flink_iceberg_tbl values (5,'s1',30,'guangzhou'),(6,'s2',31,'tianjin');
  • 运行结果

第八章 Flink集成Iceberg的DataStreamAPI、TableSQLAPI详解_第4张图片

2.2.3、指定基于快照实时增量读取数据
  • 核心:设置方法StartSnapshotId(快照编号)

(1)查看快照编号

第八章 Flink集成Iceberg的DataStreamAPI、TableSQLAPI详解_第5张图片

(2)代码实现

//2.从Iceberg中读取全量/增量读取数据
DataStream<RowData> batchData = FlinkSource.forRowData().env(env)
    .tableLoader(tableLoader)
    //基于某个快照实时增量读取数据,快照需要从元数据中获取
    .startSnapshotId(1738199999360637062L)
    //默认为false,整批次读取; 设置为true为流式读取
    .streaming(true)
    .build();

(3)运行结果

  • 说明:*只读取到指定快照往后的数据*

在这里插入图片描述

2.2.4、合并Data Flies
  • 说明:Iceberg提供Api通过定期提交任务将小文件合并成大文件,可以通过Flink 批任务来执行

(1)未处理文件

  • 说明:Iceberg每提交一次数据都会产生一个Data File。

第八章 Flink集成Iceberg的DataStreamAPI、TableSQLAPI详解_第6张图片

(2)代码实现

public class RewrietDataFiles {
    public static void main(String[] args) {
        ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
        // 1、配置TableLoader
        Configuration hadoopConf = new Configuration();
        //2.创建Hadoop配置、Catalog配置和表的Schema,方便后续向路径写数据时可以找到对应的表
        Catalog catalog = new HadoopCatalog(hadoopConf,"hdfs://leidi01:8020/flinkiceberg/");

        //3.配置iceberg 库名和表名并加载表
        TableIdentifier name = TableIdentifier.of("icebergdb", "flink_iceberg_tbl");
        Table table = catalog.loadTable(name);

        //4..合并 data files 小文件
        RewriteDataFilesActionResult result = Actions.forTable(table)
                .rewriteDataFiles()
                //默认 512M ,可以手动通过以下指定合并文件大小,与Spark中一样。
                .targetSizeInBytes(536870912L)
                .execute();

    }
}

(3)运行结果

第八章 Flink集成Iceberg的DataStreamAPI、TableSQLAPI详解_第7张图片

3、SQL API

3.1、创建表并插入数据

(1)代码实现

public class SQLAPIWriteIceberg {
    public static void main(String[] args) {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        StreamTableEnvironment tblEnv = StreamTableEnvironment.create(env);
        env.enableCheckpointing(1000);

        //1.创建Catalog
        tblEnv.executeSql("CREATE CATALOG hadoop_iceberg WITH (" +
                "'type'='iceberg'," +
                "'catalog-type'='hadoop'," +
                "'warehouse'='hdfs://leidi01:8020/flinkiceberg')");

        //2.使用当前Catalog
        tblEnv.useCatalog("hadoop_iceberg");

        //3.创建数据库
        tblEnv.executeSql("create database iceberg_db");

        //4.使用数据库
        tblEnv.useDatabase("iceberg_db");

        //5.创建iceberg表 flink_iceberg_tbl
        tblEnv.executeSql("create table hadoop_iceberg.iceberg_db.flink_iceberg_tbl2(id int,name string,age int,loc string) partitioned by (loc)");

        //6.写入数据到表 flink_iceberg_tbl
        tblEnv.executeSql("insert into hadoop_iceberg.iceberg_db.flink_iceberg_tbl2 values (1,'zs',18,'beijing'),(2,'ls',19,'shanghai'),(3,'ww',20,'guangzhou')");
    }
}

(2)运行结果

  • 说明:通过HDFS查看文件是否生成。

第八章 Flink集成Iceberg的DataStreamAPI、TableSQLAPI详解_第8张图片

(3)查看数据

  • 说明:通过FlinkSQL查看表中数据
-- 1、创建Catalog
 CREATE CATALOG flinkiceberg WITH (
>     'type'='iceberg',
>     'catalog-type'='hadoop',
>     'warehouse'='hdfs://leidi01:8020/flinkiceberg/',
>     'property-version'='1'
> );

-- 2、查询数据
use catalog flinkiceberg
use iceberg_db;
select * from flink_iceberg_tbl2;
  • 查看结果

第八章 Flink集成Iceberg的DataStreamAPI、TableSQLAPI详解_第9张图片

3.2、批量查询表数据

  • 说明:SQL API批量查询表中数据,直接查询显示即可

(1)代码逻辑

在这里插入图片描述

(2)代码实现

public class SQLAPIReadIceberg {
    public static void main(String[] args) {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        StreamTableEnvironment tblEnv = StreamTableEnvironment.create(env);

        env.enableCheckpointing(1000);

//1.创建Catalog
        tblEnv.executeSql("CREATE CATALOG hadoop_iceberg WITH (" +
                "'type'='iceberg'," +
                "'catalog-type'='hadoop'," +
                "'warehouse'='hdfs://leidi01:8020/flinkiceberg')");
//2.批量读取表数据
        TableResult tableResult = tblEnv.executeSql("select * from hadoop_iceberg.iceberg_db.flink_iceberg_tbl2 ");

        tableResult.print();
    }
}
  • 运行结果

第八章 Flink集成Iceberg的DataStreamAPI、TableSQLAPI详解_第10张图片

3.3、实时查询表数据

  • 说明:link SQL API 实时查询Iceberg表数据时需要设置参数**“table.dynamic-table-options.enabled”为true**,以支持SQL语法中的“OPTIONS”选项

(1)代码逻辑

在这里插入图片描述

(2)代码实现

public class SQLStreamReadIceberg {
    public static void main(String[] args) {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        StreamTableEnvironment tblEnv = StreamTableEnvironment.create(env);

        env.enableCheckpointing(1000);

        Configuration configuration = tblEnv.getConfig().getConfiguration();
        // 支持SQL语法中的 OPTIONS 选项
        configuration.setBoolean("table.dynamic-table-options.enabled", true);

        //1.创建Catalog
        tblEnv.executeSql("CREATE CATALOG hadoop_iceberg WITH (" +
                "'type'='iceberg'," +
                "'catalog-type'='hadoop'," +
                "'warehouse'='hdfs://leidi01:8020/flinkiceberg')");

        //2.从Iceberg表当前快照读取所有数据,并继续增量读取数据
        // streaming指定为true支持实时读取数据,monitor_interval 监控数据的间隔,默认1s
        TableResult tableResult = tblEnv.executeSql("select * from hadoop_iceberg.iceberg_db.flink_iceberg_tbl2 /*+ OPTIONS('streaming'='true', 'monitor-interval'='1s')*/");

        tableResult.print();
    }
}
  • 运行结果:

第八章 Flink集成Iceberg的DataStreamAPI、TableSQLAPI详解_第11张图片

(3)测试验证

  • FlinkSQL插入数据
insert into flink_iceberg_tbl2 values (5,'s1',30,'guangzhou'),(6,'s2',31,'tianjin');
  • 运行结果:在IDEA的控制台可以看到新增数据

第八章 Flink集成Iceberg的DataStreamAPI、TableSQLAPI详解_第12张图片

3.4、基于快照实时增量读取数据

  • 说明:基于某个snapshot-id来继续实时获取数据

(1)代码逻辑

在这里插入图片描述

(2)代码实现

  • FlinkSQL插入数据
insert into flink_iceberg_tbl2 values (7,'s11',30,'beijing'),(8,'s22',31,'beijing');
  • snapshot-id如下:

第八章 Flink集成Iceberg的DataStreamAPI、TableSQLAPI详解_第13张图片

  • 代码实现
public class SQLSnapshotReadIceberg {
    public static void main(String[] args) {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        StreamTableEnvironment tblEnv = StreamTableEnvironment.create(env);
        env.enableCheckpointing(1000);

        Configuration configuration = tblEnv.getConfig().getConfiguration();
        // 支持SQL语法中的 OPTIONS 选项
        configuration.setBoolean("table.dynamic-table-options.enabled", true);

        //1.创建Catalog
        tblEnv.executeSql("CREATE CATALOG hadoop_iceberg WITH (" +
                "'type'='iceberg'," +
                "'catalog-type'='hadoop'," +
                "'warehouse'='hdfs://leidi01:8020/flinkiceberg')");

        //2.从Iceberg 指定的快照继续实时读取数据,快照ID从对应的元数据中获取
        //start-snapshot-id :快照ID
        TableResult tableResult2 = tblEnv.executeSql("SELECT * FROM hadoop_iceberg.iceberg_db.flink_iceberg_tbl2 /*+ OPTIONS('streaming'='true', 'monitor-interval'='1s', 'start-snapshot-id'='8334669420406375204')*/");
        tableResult2.print();
    }
}

(3)运行结果

在这里插入图片描述

4、常见报错

4.1、window远程连接hadoop环境变量找不到

  • 报错日志
HADOOP_HOME and hadoop.home.dir are unset.
  • 报错原因:本地远程连接Hadoop系统时需要在本地配置相关的Hadoop变量,主要包括hadoop.dll 与 winutils.exe 等。
winutils:由于hadoop主要基于linux编写,**winutil.exe主要用于模拟linux下的目录环境**。当Hadoop在windows下运行或调用远程Hadoop集群的时候,需要该辅助程序才能运行。winutils是Windows中的二进制文件,适用于不同版本的Hadoop系统并构建在Windows VM上,该VM用以在Windows系统中测试Hadoop相关的应用程序。
  • 解决方案:

(1)下载hadoop集群对应winutils版本

  • 注意事项:如果你安装的hadoop版本是:3.1.2或者3.2.0 就用winutils-master里面的hadoop-3.0.0配置环境变量吧!
https://github.com/steveloughran/winutils

(2)将环境变量%HADOOP_HOME%设置为指向包含WINUTILS.EXE的BIN目录上方的目录

第八章 Flink集成Iceberg的DataStreamAPI、TableSQLAPI详解_第14张图片

4.2、guava包版本冲突

  • 报错日志
com.google.common.base.Preconditions.checkArgument(ZLjava/lang/String;Ljava/lang/Object;)V
  • 报错原因:guava包版本冲突
  • 解决方案:使用Maven Helper插件解决冲突

①第一步:在pom界面点击Dependency Analyzer

第八章 Flink集成Iceberg的DataStreamAPI、TableSQLAPI详解_第15张图片

②第二步:查看Dependency Analyzer功能界面

第八章 Flink集成Iceberg的DataStreamAPI、TableSQLAPI详解_第16张图片

Ⅰ、显示冲突的jar包

Ⅱ、以列表形式显示所有依赖

Ⅲ、以数的形式显示所有依赖

③第三步:逐个解决conflicts列表中的jar包冲突问题,以guava为例:

​ 点击guava,找到右侧部分红色字体,即依赖冲突的地方,下图显示当前guava版本是24.0,但是有两个依赖的guava版本分别是27.0.0.1和16.0.1。

④将低版本依赖都排除掉

第八章 Flink集成Iceberg的DataStreamAPI、TableSQLAPI详解_第17张图片

选中红色字体显示的内容->右键->Exclude,完成上述步骤结果如下:

第八章 Flink集成Iceberg的DataStreamAPI、TableSQLAPI详解_第18张图片

⑤重新加载依赖配置

第八章 Flink集成Iceberg的DataStreamAPI、TableSQLAPI详解_第19张图片

-------------------------------------------------------------------分割线-------------------------------------------------------------------------------

以上guava包冲突解决后依旧报错,将Hadoop版本从3.2.2降低到3.1.1不报错。

​ 注意hive-3.1.2依赖的Hadoop版本是3.1.0 [3],一般不建议runtime的Hadoop版本高于hive依赖的版本。

Ⅰ、解决方法一是在hive-exec里对guava做迁移,这个需要自己手动给hive-exec重新打包

Ⅱ、解决方法二是降低Hadoop版本,这里不一定要降低集群的Hadoop版本,而只是降低flink和hive这边用到的Hadoop版本,相对于用老的Hadoop客户端去访问新的Hadoop服务器,这个小版本的包容性一般来说是没有问题的。

<hadoop.version>3.2.2hadoop.version>
将hadoop版本由3.2.2版本降低为3.1.1<-->
<hadoop.version>3.1.1hadoop.version>
4.4、log4j2配置文件报错
  • 报错日志
ERROR StatusLogger No log4j2 configuration file found. Using default configuration: logging only errors to the console. Set system property 'org.apache.logging.log4j.simplelog.StatusLogger.level' to TRACE to show Log4j2 internal initialization logging.
  • 报错原因:没有发现log4j2配置文件
  • 解决方案:添加配置log4j2.xml文件,对应org.apache.logging.log4j.Logger

<Configuration status="WARN">
	<Properties>
		<property name="log_level" value="info" />
		<Property name="log_dir" value="log" />
		<property name="log_pattern"
			value="[%d{yyyy-MM-dd HH:mm:ss.SSS}] [%p] - [%t] %logger - %m%n" />
		<property name="file_name" value="test" />
		<property name="every_file_size" value="100 MB" />
	Properties>
	<Appenders>
		<Console name="Console" target="SYSTEM_OUT">
			<PatternLayout pattern="${log_pattern}" />
		Console>
		<RollingFile name="RollingFile"
			filename="${log_dir}/${file_name}.log"
			filepattern="${log_dir}/$${date:yyyy-MM}/${file_name}-%d{yyyy-MM-dd}-%i.log">
			<ThresholdFilter level="DEBUG" onMatch="ACCEPT"
				onMismatch="DENY" />
			<PatternLayout pattern="${log_pattern}" />
			<Policies>
				<SizeBasedTriggeringPolicy
					size="${every_file_size}" />
				<TimeBasedTriggeringPolicy modulate="true"
					interval="1" />
			Policies>
			<DefaultRolloverStrategy max="20" />
		RollingFile>
 
		<RollingFile name="RollingFileErr"
			fileName="${log_dir}/${file_name}-warnerr.log"
			filePattern="${log_dir}/$${date:yyyy-MM}/${file_name}-%d{yyyy-MM-dd}-warnerr-%i.log">
			<ThresholdFilter level="WARN" onMatch="ACCEPT"
				onMismatch="DENY" />
			<PatternLayout pattern="${log_pattern}" />
			<Policies>
				<SizeBasedTriggeringPolicy
					size="${every_file_size}" />
				<TimeBasedTriggeringPolicy modulate="true"
					interval="1" />
			Policies>
		RollingFile>
	Appenders>
	<Loggers>
		<Root level="${log_level}">
			<AppenderRef ref="Console" />
			<AppenderRef ref="RollingFile" />
			<appender-ref ref="RollingFileErr" />
		Root>
	Loggers>
Configuration>
4.5、Flink Hive Catalog报错
  • 报错日志
Exception in thread "main" java.lang.NoSuchMethodError: org.apache.calcite.sql.parser.SqlParser.config()Lorg/apache/calcite/sql/parser/SqlParser$Config;
  • 报错原因:依赖报错

  • 解决方案:将所有依赖切换到2.12,切换flink-table-api-java-bridgeflink-table-api-scala-bridge_2.12

你可能感兴趣的:(#,Iceberg专题,flink,kafka,大数据)