- 关于2025年人工智能agent的5个预测
大模型微调实战
人工智能语言模型机器学习自然语言处理
2024年是人工智能agent走向主流的一年。从年初黑客们那些笨拙、昂贵且充满激情的项目开始,agent现在已经得到了科技巨头、SaaS公司、学术研究人员等更多人的接纳。与此同时,他们的形式也在不断增多,从文本扩展到多种模式,并在现实世界中执行行动的能力也变得更强大。在这里,我预测2025年agent领域的轨迹,因为它开始在人工智能社区之外产生影响力。1.对agent的兴趣持续激增今年,对人工智能
- 自学记录:用鸿蒙API 13 开发一个专业的进度条与二维码组件
harmonyos-next
这篇文章,我会结合自己的学习故事,讲解如何使用API13的全新能力,打造一个进度条和二维码展示组件,并以实际开发项目作为成果展示。我的学习路线:从文档到实践如果正在看的同学如果你不了解鸿蒙,那么我简单说一下,鸿蒙目前需要使用ArkUI配合ArkTS进行开发。它们不仅支持声明式开发,还通过DSL(领域专用语言)的设计,使代码更高效、模块化。于是,我们从以下几点展开学习:了解进度条与二维码组件的能力\
- DeepSeek:极致的中国技术理想
X_taiyang18
AI与机器学习人工智能
揭秘DeepSeek:一个更极致的中国技术理想主义故事划重点中国的大模型创业公司DeepSeek因其创新的MLA架构和DeepSeekMoESparse结构,使推理成本降低至每百万token仅1块钱,引发中国大模型价格战。与其他大公司烧钱补贴不同,DeepSeek是有利润的,背后是DeepSeek对模型架构的全面创新。DeepSeek创始人梁文锋认为,中国的大模型创业者除应用创新外,也可以加入到全
- 中科曙光C/C++研发工程师二面
TrustZone_
ARM/Linux嵌入式面试c语言c++开发语言
自我介绍;针对项目:CNN模型、损失函数、评价指标、改进方向、计算加速;CNN模型CNN,即卷积神经网络,是一种专门用于处理具有类似网格结构数据的深度学习模型。它通过卷积层和池化层提取图像特征,并通过全连接层进行分类或回归预测。CNN在图像识别、目标检测和图像生成等领域取得了巨大成功。具体来说,CNN的模型结构包括输入层、卷积层、激活函数、池化层、全连接层和输出层。输入层接收图像数据,并将其转换为
- docker教程安装docker
爱吃蚂蚁的松鼠
dockerdockerkubernetes容器
学习一个技术最重要的是学习一个技术的生态,用这些生态的相关知识点解决实际问题。docker实战docker拉取容器(nginx的坑等等)docker日志配置和DNS配置docker远程API调试(通过对接API来实现,打造自己的web运维工具)docker结合terraform自动化运维工具做自动化工作docker网络(网络流转原理和一些创建新环境来跟公司网络环境保持一致才能连接)docker高可
- python获取当前文件路径
weixin_33877885
python
python获取当前文件路径学习了:https://www.cnblogs.com/strongYaYa/p/7200357.htmlhttps://blog.csdn.net/heatdeath/article/details/78070832https://www.cnblogs.com/WonderHow/p/4403727.htmlimportosprint(os.getcwd())#fo
- 学生党福利!轻松搞定Photoshop,还有这些宝藏软件等你解锁!
shelby_loo
photoshopui
作为一名学生,想要学习设计、开发,一套趁手的软件必不可少。但动辄上千的软件价格,让不少同学望而却步。别担心!今天就来给大家分享一个“薅羊毛”的绝佳途径——利用Edu邮箱免费获取Adobe全家桶、JetBrains全家桶以及其他设计类软件!Edu邮箱,你的设计神器Edu邮箱,通常由高校或教育机构颁发,以“.edu”结尾。凭借这个邮箱,你可以申请到包括Photoshop、Illustrator、Pre
- 改进yolov8工业缺陷检测+swin+transformer
qq1309399183
计算机视觉实战项目集合YOLOtransformer深度学习人工智能计算机视觉机器学习神经网络
使用NEU-DET数据集进行缺陷检测的YOLOv8改进模型应用详解在现代工业生产过程中,质量控制是至关重要的一个环节。随着机器视觉技术和人工智能算法的发展,基于深度学习的方法已经成为自动化缺陷检测的重要工具。本篇将介绍一种基于NEU-DET数据集,利用YOLOv8及其改进版本(包含坐标注意力机制和SwinTransformer)进行缺陷检测的应用开发过程。我们将详细探讨从数据准备到模型训练,再到最
- Python 爬虫入门教程:从零构建你的第一个网络爬虫
m0_74825223
面试学习路线阿里巴巴python爬虫开发语言
网络爬虫是一种自动化程序,用于从网站抓取数据。Python凭借其丰富的库和简单的语法,是构建网络爬虫的理想语言。本文将带你从零开始学习Python爬虫的基本知识,并实现一个简单的爬虫项目。1.什么是网络爬虫?网络爬虫(WebCrawler)是一种通过网络协议(如HTTP/HTTPS)获取网页内容,并提取其中有用信息的程序。常见的爬虫用途包括:收集商品价格和评价。抓取新闻或博客内容。统计数据分析。爬
- 基于 Python 的机器学习模型部署到 Flask Web 应用:从训练到部署的完整指南
m0_74825223
python机器学习flask
目录引言技术栈步骤一:数据预处理步骤二:训练机器学习模型步骤三:创建FlaskWeb应用步骤四:测试Web应用步骤五:模型的保存与加载保存模型加载模型并在Flask中使用步骤六:Web应用的安全性考量示例:简单的输入验证示例:自定义错误处理示例:使用Flask-JWT-Extended进行认证结论参考资料引言在当今数据驱动的时代,机器学习模型已经广泛应用于各行各业,从金融、医疗到教育等领域。然而,
- 智能体(AI Agent)全解析:概念、原理至应用深度探索
网安猫叔
人工智能语言模型自然语言处理AIGC机器学习
一、智能体概念的深度剖析1.1智能体(Agent)的本质智能体,作为人工智能领域的一颗璀璨明珠,是那些能够主动感知周遭环境、自主决策并付诸实践的系统实体。它们不仅拥有自主性、交互性、反应灵敏及高度适应性等鲜明特征,更在复杂多变的情境中展现出卓越的自我管理与任务执行能力。智能体的诞生,标志着人工智能技术从机械式的规则遵循迈向了更为灵活、智能的自主决策新时代。智能体的核心精髓在于其内置的学习与决策引擎
- 大模型GUI系列论文阅读 DAY2续:《一个具备规划、长上下文理解和程序合成能力的真实世界Web代理》
feifeikon
论文阅读
摘要预训练的大语言模型(LLMs)近年来在自主网页自动化方面实现了更好的泛化能力和样本效率。然而,在真实世界的网站上,其性能仍然受到以下问题的影响:(1)开放领域的复杂性,(2)有限的上下文长度,(3)在HTML结构上的归纳偏差不足。我们提出WebAgent,一个由LLM驱动的智能代理,能够通过自我学习的方式,在真实网站上按照自然语言指令完成任务。WebAgent通过将指令提前规划,将其分解为子指
- 改进yolov8缺陷检测+swin+transformer
QQ_1309399183
计算机视觉实战项目集锦YOLOtransformer深度学习人工智能计算机视觉opencv机器学习
使用NEU-DET数据集进行缺陷检测的YOLOv8改进模型应用详解在现代工业生产过程中,质量控制是至关重要的一个环节。随着机器视觉技术和人工智能算法的发展,基于深度学习的方法已经成为自动化缺陷检测的重要工具。本篇将介绍一种基于NEU-DET数据集,利用YOLOv8及其改进版本(包含坐标注意力机制和SwinTransformer)进行缺陷检测的应用开发过程。我们将详细探讨从数据准备到模型训练,再到最
- Golang 生态学习
蚂蚁在飞-
golang人工智能自然语言处理
1.Go语言基础在深入Go语言的生态之前,首先需要掌握Go语言本身的核心特性。•Go语言官方文档:https://golang.org/doc/Go官方文档是学习语言基础和标准库的首选资源。•学习内容:•基础语法:数据类型、控制流、函数、结构体、接口、错误处理等。•并发编程:Go的并发模型(goroutines和channels)是Go的强项,学习并发编程是使用Go的重要步骤。•内存管理:Go的垃
- 【java小灶课】详解java与python的不同之处
wit_@
pythonjavabigdataweb
以下是一篇详细的博客,全面介绍了Java与Python在多方面的区别,包括语法、类型系统、内存管理、面向对象特性、并发编程以及常见应用场景等,希望能帮助你深入理解这两门语言的异同,为学习或实际应用提供指导。目录语言概述语法对比类型系统内存管理与垃圾回收面向对象特性函数式编程与Lambda表达式异常处理标准库与第三方库生态并发和多线程运行效率与性能优化常见应用场景学习曲线与社区支持总结1.语言概述J
- 常见哈希表相关题目
我要学编程(ಥ_ಥ)
优选算法专题算法数据结构哈希表
找往期文章包括但不限于本期文章中不懂的知识点:个人主页:我要学编程(ಥ_ಥ)-CSDN博客所属专栏:优选算法专题目录1.两数之和面试题01.02.判定是否互为字符重排217.存在重复元素219.存在重复元素II49.字母异位词分组哈希表我们在数据结构阶段也是重点学习了,并且也已经刷了一部分的题目了。下面还练习一部分题目即可。1.两数之和题目:给定一个整数数组nums和一个整数目标值target,请
- 【Python】成功解决ValueError: zero-size array to reduction operation minimum which has no identity
高斯小哥
BUG解决方案合集python新手入门学习debug
【Python】成功解决ValueError:zero-sizearraytoreductionoperationminimumwhichhasnoidentity个人主页:高斯小哥高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程希望得到您的订阅和支持~创作高质量博文(平均质量分92+),分享更多关于深度学习、PyTorch、
- 开源AI图像工具—Stable Diffusion
蚂蚁在飞-
人工智能stablediffusion
StableDiffusion是一种基于深度学习的生成式模型,用于图像生成、图像修复和风格转换等任务。它是由StabilityAI和CompVis团队联合开发的。StableDiffusion在生成高质量图像方面表现出色,并且是开源的,可以自由使用和扩展。StableDiffusion的核心技术1.扩散模型(DiffusionModels):•基于概率生成模型。•从噪声中逐步反向生成清晰的图像。•
- 机器学习:scikit-learn 和 Jupyter Notebook(推荐初学者使用google colab)
wyc9999ww
机器学习scikit-learnjupyter人工智能python
对于初学者来说,scikit-learn是一个理想的机器学习入门工具。不仅提供了丰富的算法和功能,还通过一致的API设计,确保能够快速上手并进行各种机器学习任务。通过使用scikit-learn,可以专注于理解和实践机器学习的核心概念,而不必过多担心底层实现细节。所以scikit-learn能轻松实现从数据预处理到模型训练和评估的完整流程。此外在推荐一个适合初学者的深度学习平台工具googleco
- 【深度学习】CrossEntropyLoss需要手动softmax吗?
zz的学习笔记本
深度学习深度学习人工智能
【深度学习】CrossEntropyLoss需要手动softmax吗?问题:CrossEntropyLoss需要手动softmax吗?答案:不需要官方文档代码解释问题:CrossEntropyLoss需要手动softmax吗?之前用pytorch实现自己的网络时,使用CrossEntropyLoss的时候将网路输出经softmax激活层后再计算CrossEntropyLoss。答案:不需要调用了损
- 1、Java 环境搭建与基本概念:开启 Java 编程之旅的第一步
翻晒时光
从0学Javajava开发语言
大家好,欢迎来到我们的Java学习系列博客,今天是第一课,我们将一起探索Java环境搭建与基本概念。无论你是编程新手,还是想要学习一门新语言的老手,Java都是一个非常值得学习的语言,它在众多领域都有着广泛的应用,从企业级软件开发、安卓应用开发到大数据处理,都能看到Java的身影。让我们开始这充满挑战与乐趣的Java学习之旅吧!一、Java的发展历程与特点Java诞生于SunMicrosystem
- 有趣的python代码实例_Python之路:200个Python有趣的小例子一网打尽
weixin_39845406
有趣的python代码实例
概述博主最近在学习python,看完了一整套学习视频,然后呃呃呃,还是用不太流畅。碰巧在全球最大的同性交友论坛GayHub(呸!是开源代码托管平台Github)上面发现了一个项目,该项目列举了200多个Python小例子,Python基础、Python坑点、Python字符串和正则、Python绘图、Python日期和文件、Web开发、数据科学、机器学习、深度学习、TensorFlow、Pytor
- 机器学习数学基础-定积分应用-经济问题
华东算法王(原聪明的小孩子
小孩哥解析宋浩微积分算法
定积分在经济学中的应用广泛,特别是用来解决与累积量、平均值、总收入、成本、利润等相关的问题。以下是定积分在经济学中的几个常见应用场景:1.总收入和总成本的计算在经济学中,定积分常用于计算总收入、总成本等累积量。如果给定价格函数和需求函数或供应函数,定积分可以帮助我们计算从某一数量到另一数量之间的总收入或总成本。总收入:假设某商品的价格随数量的变化而变化,价格函数为(p(x)),其中(x)表示销售的
- 迁移学习与RBF神经网络
fanxbl957
人工智能理论与实践迁移学习神经网络人工智能
迁移学习与RBF神经网络一、引言在机器学习和深度学习领域,迁移学习和神经网络都是备受关注的重要技术。迁移学习旨在将从一个或多个源任务中学习到的知识应用到目标任务中,以加快目标任务的学习过程,提高学习效果,尤其在数据稀缺或训练资源有限的情况下展现出显著优势。而RBF(径向基函数)神经网络作为一种经典的神经网络结构,以其独特的函数逼近能力和良好的局部逼近特性,在众多领域取得了出色的性能表现。将迁移学习
- “数据飞轮” 理念焕新,助力 2025 企业数智化发展
大数据大模型
2024年,全球科技领域在人工智能浪潮的席卷下加速前行,数字化转型进程也随之踏入全新阶段。在这一背景下,数据飞轮理念延续“以数据消费促资产建设,以数据消费助业务发展”的核心内涵,实现焕新升级。在2025年,升级后的数据飞轮2.0,将AI视作数智化的核心竞争力,借助AI技术推动企业更普惠的数据消费。“数据飞轮”2.0的理念,带来了多方面的显著升级。其一,它将AI技术深度融入数据生产、管理与应用各环节
- 企业如何实现云成本控制:实现最大投资回报的关键策略
青莲网络
云计算
企业上云费用越来越高,运维部门经费容易超支?云成本优化到底有多重要?如何管理和优化云成本?如何从云成本优化中获得最大收益?企业想要实现云成本控制,就要重新评估云部署并对云成本进行优化。.云成本优化在企业数字化过程中的挑战和作用无限可扩展技术的压力云的无限可扩展技术可能会带来巨大的压力。在面对如此强大的技术能力时,开发人员需要不断学习和适应,以确保能够熟练地识别适合企业需求的云资源。这个学习过程可能
- 基于Windchill PLM系统的BOM多视图演变与重构
制造数字化方案研究院
产品运营windchillPLMBOM
前言在制造型企业中,物料清单(BillofMaterial,BOM)是企业产品数据管理的核心,它贯穿于概念设计、计算分析、详细设计、工艺规划、样机试制、加工制造、销售维护,直至产品消亡的各个阶段,是产品数据在整个生命周期中传递和共享的载体,也是各应用系统之间进行信息集成的桥梁和纽带。产品生命周期管理(ProductLifecycleManagement,PLM)作为一个贯穿产品全生命周期的、开放的
- 用大数据“喂养”出来的AI模型ChatGPT 爆火是大数据、大算力、强算法的支撑,中国缺乏的什么?
Ai17316391579
深度学习服务器人工智能
先来了解一下ChatGPT的基本情况ChatGPT本质属于生成式人工智能,属于无监督或半监督的机器学习。与之相关的还有Discriminativemodeling区分式模型,区分式模型大多属于监督式学习。生成性人工智能目前有两种主要的框架:GAN(GenerativeAdversarialNetwork)和GPT(GenerativePre-trainedTransformer)。GAN目前广泛应
- 英伟达最新的算力芯片Blackwell芯片名为GB200
算力资源比较多
算力智算大模型人工智能gpu算力语言模型大数据推荐算法
英伟达最新的算力芯片相关信息如下:Blackwell芯片:英伟达在2024年6月2日由创始人兼CEO黄仁勋宣布,其Blackwell芯片已开始投产。第一款Blackwell芯片名为GB200,被宣称为目前“全球最强大的芯片”。Blackwell芯片基于新的BlackwellGPU架构,专为人工智能模型设计。每个B200GPU包含2080亿个晶体管,GB200由两个这样的GPU和一个GraceCPU
- Objective-C语言的学习路线
AI向前看
包罗万象golang开发语言后端
Objective-C语言的学习路线在程序开发的历史长河中,Objective-C作为一种继承自C语言与Smalltalk的编程语言,扮演着重要的角色。虽然随着Swift语言的出现,Objective-C的使用有所减少,但它依然是iOS和macOS应用开发的重要基础,许多现有的大型应用程序仍然在使用它。因此,学习Objective-C,不仅能帮助我们理解更古老的代码库,还能加深我们对面向对象编程的
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo