PyTorch >= 1.0
Python 3
CIFAR-10 官方下载 ,下载为 cifar-10-python.tar.gz
解压缩文件包含:
‘batches.meta’,‘data_batch_1’,‘data_batch_2’,‘data_batch_3’,‘data_batch_4’,‘data_batch_5’,‘test_batch’
由官方代码读取,其中 batches.meta 中为描述内容 data_batch_* 为训练集,test_batch 为测试集
读取数据:
def unpickle(file):
import pickle
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
数据显示:以测试数据为例,单个数据维度为(3072,)
data = unpickle('test_batch')
"""
data.keys():[b'batch_label', b'labels', b'data', b'filenames']
"""
# 获取单个数据
img = data[b'data'][0].reshape(3, 32, 32).transpose(1, 2, 0)
fname = data[b'filenames'][0]
label = data[b'label'][0]
"""
图片显示: plt.imshow(img)
fname: b'domestic_cat_s_000907.png'
label: 3
"""
torchvision
有自带的函数 torchvision.datasets.CIFAR10()
可直接处理CIFAR10数据,此处采用自定义数据集的方式,需要继承 torch.utils.data
下的 dataset.Dataset
,重写 __init__()
,__getitem__()
,__len__()
函数,具体设计根据数据来。如果数据是按照文件夹分好的可以直接使用 torchvision.datasets.ImageFolder()
,详见官网 。
from torch.utils.data import dataset
from torchvision import transforms
import numpy as np
import os
import time
class CIFAR10(dataset.Dataset):
def __init__(self, mode):
assert mode in ['train', 'test'], print('mode must be "train" or "test"')
data_root = './data/cifar-10-batches-py/' # 文件目录
data_files = {'train': ['data_batch_1', 'data_batch_2', 'data_batch_3', 'data_batch_4', 'data_batch_5'],
'test': ['test_batch']}
self.imgs = None
self.labels = []
# self.class_names = self._unpickle(os.path.join(data_root, 'batches.meta'))[b'label_names]
for f in data_files[mode]:
data_dict = self._unpickle(os.path.join(data_root, f))
data = data_dict[b'data'].reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
if self.imgs is None:
self.imgs = data
else:
self.imgs = np.vstack((self.imgs, data))
self.labels += data_dict[b'labels']
if mode == 'train':
# 训练集加入随机翻转, 数据增强
self.trans = transforms.Compose([
transforms.ToPILImage(),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
else:
self.trans = transforms.Compose([
transforms.ToPILImage(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def __getitem__(self, index):
img = self.imgs[index]
label = self.labels[index]
img = self.trans(img)
return img, label
def __len__(self):
return len(self.labels)
def _unpickle(file):
import pickle
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
PyTorch定义模型需要继承nn.Module
,重写 __init__()
和 forward()
函数直接在初始中定义网络需要的结构,前向传播函数定义执行的顺序。此处模型参考 《Binary Classification from Positive Data with Skewed Confidence》 ,在CIFAR10数据集准确率 75% 左右。
import torch
import torch.nn as nn
class CIFAR10_Net(nn.Module):
def __init__(self, num_classes=10):
super().__init__()
self.feature = nn.Sequential(
nn.Conv2d(3, 18, kernel_size=5, padding=2, stride=1),
nn.ReLU(True),
nn.MaxPool2d(2, 2),
nn.Conv2d(18, 48, kernel_size=5, padding=2, stride=1),
nn.ReLU(True),
nn.MaxPool2d(2, 2)
)
self.fc = nn.Sequential(
nn.Linear(48*8*8, 800),
nn.ReLU(True),
nn.Linear(800, 400),
nn.ReLU(True),
nn.Linear(400, num_classes)
)
def forward(self, x):
out = self.feature(x)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
设置是否使用GPU,以及每个批次的个数和训练次数。
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
batch_size = 64
total_epoch = 10
best_acc = 0.
损失函数采用交叉熵函数,优化器使用SGD,scheduler
为学习率衰减,设置每 8 个epoch学习率变为 l r ∗ g a m m a lr * gamma lr∗gamma 。
import torch.nn as nn
import torch.optim as optim
# model
model = CIFAR10_Net(10).to(device)
# loss
criterion = nn.CrossEntropyLoss()
# optimizer
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=3e-4, momentum=0.9)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=8, gamma=0.1)
DataLoader
用于加载数据集,num_workers
为多线程设置,默认为0,pin_memory
为锁页内存,设置为True,则意味着生成的Tensor数据最开始是属于内存中的锁页内存,这样将内存的Tensor转义到GPU的显存就会更快一些,如果内存不足则False。
from torch.utils.data import DataLoader
trainloader = DataLoader(dataset=CIFAR10('train'), batch_size=batch_size, shuffle=True, num_workers=0, pin_memory=True)
testloader = DataLoader(dataset=CIFAR10('test'), batch_size=batch_size, shuffle=False, num_workers=0, pin_memory=True)
def train():
model.train()
running_loss = 0.
running_correct = 0.
data_length = 0
t1 = time.time()
for i, (data, label) in enumerate(trainloader):
data, label = data.to(device), label.to(device)
# default
optimizer.zero_grad()
out = model(data)
loss = criterion(out, label)
loss.backward()
optimizer.step()
# print info
data_length += data.size(0)
running_loss += loss.item() * data.size(0) / data_length
_, pred = torch.max(out, 1)
running_correct += pred.eq(label).sum().item()
acc = running_correct / data_length
print('Loss:{:.4f}, Acc@1:{:.4f}, time:{:.2f}'.format(running_loss, acc, time.time() - t1), end=' -> ')
def test(epoch):
model.eval()
running_loss = 0.
running_correct = 0.
data_length = 0
with torch.no_grad():
for i, (data, label) in enumerate(testloader):
data, label = data.to(device), label.to(device)
# default
out = model(data)
loss = criterion(out, label)
data_length += data.size(0)
running_loss += loss.item() * data.size(0) / data_length
_, pred = torch.max(out, 1)
running_correct += pred.eq(label).sum().item()
acc = running_correct / data_length
print('TestLoss:{:.4f}, Acc@1:{:.4f}'.format(running_loss, acc), end=' ')
# save model
global best_acc
if acc > best_acc:
best_acc = acc
state = {
'net': model.state_dict(),
'epoch': epoch,
'best_acc': best_acc
}
torch.save(state, 'ckpt.pth')
print('*')
else:
print()
t1 = time.time()
for epoch in range(total_epoch):
print('epoch[{:>3}/{:>3}]'.format(epoch, total_epoch), end=' ')
train()
scheduler.step()
test(epoch)
t = time.time() - t1
print('\ntotal time:{}min{:.2f}s, best_acc:{:.4f}'.format(t//60, t%60, best_acc))
训练曲线:
Reference:
[1] TRANSFER LEARNING FOR COMPUTER VISION TUTORIAL .
[2] PYTORCH DOCUMENTATION .
[3] The CIFAR-10 dataset .