《Linux/Unix系统编程手册》 时间子系统

Linux下操作系统编程有两本经典APUE即《Advanced Programming in the UNIX Environment》和TLPI《The Linux Programming Interface》,中文版对应《UNIX环境高级编程(第3版)》和《Linux/UNIX系统编程》。

TLPI洋洋洒洒英文版1506页,中文版1176页;一共64章节,明显是作为工具书使用。通过目录可以了解本书的结构,以及作者的组织形式。

  • 背景知识及概念:共3章分别介绍了UNIX、C、Linux历史;Linux和UNIX基本概念;Linux和UNIX系统编程基本概念。
  • 系统编程接口基本特性:共9章分别介绍了文件I/O、进程、内存分配、用户和组、进程凭证、时间、系统限制和选项、获取系统和进程信息。
  • 系统编程接口高级特性:共11章分别介绍了文件I/O缓冲、文件系统、文件属性、扩展属性、访问控制列表、目录和链接、监控文件时间、信号、定时器。
  • 进程、程序及线程:共10章分别介绍了进程创建、终止,监控子进程,执行程序;POSIX线程。
  • 进程及程序高级主题:共9章分别介绍了进程组、会话及任务控制;进程优先级和进程调度;进程资源;守护进程;编写安全的特权程序;能力;登陆记账;共享库。
  • 进程间通信:共13章分别介绍了IPC概览;管道和FIFO;System V IPC消息队列、信号量及共享内存;内存映射;虚拟内存操作;POSIX消息队列、信号量及共享内存;文件锁定。
  • 套接字和网络编程:共6章。
  • 高级I/O主题:共3章分别介绍了中断、其他I/O模型、伪终端。

关于本书的示例有两个版本Distribution version和Book version,在这里可以找到他们的详细信息;为了便于使用将其放到GitHub - arnoldlu/tlpi: Source Code of the Programs in The Linux Programming Interface。

第10章 时间

1. 日历时间

 常用的获取时间的函数time和gettimeofday两种:

#include 
int gettimeofday(struct timeval *tv, struct timezone *tz);
                      Returns 0 on success, or –1 on error

struct timeval {
    __kernel_time_t        tv_sec;        /* seconds */
    __kernel_suseconds_t    tv_usec;    /* microseconds */
};

#include 
time_t time(time_t *timep);
        Returns number of seconds since the Epoch,or (time_t) –1 on error

time函数基于gettimeofday实现,time精度秒级,gettimeofday可以达到微妙。

2. 时间转换函数

下图是从内核获取时间的两种方式(time和gettimeofday),以及基于此进行的时间转换(timeval、time_t、tm)。

time对应的设置时间函数是stime,gettimeofday对应的是gettimeofday。

time_t和timeval关系,time_t是timeval的秒部分对齐,四舍五入。

time_t到tm转换:gmtime()、localtime()。

tm到time_t转换:mktime()。

time_t到文本:ctime()。

tm到文本:asctime()、strftime()。

文本到tm:strptime()。

《Linux/Unix系统编程手册》 时间子系统_第1张图片

3. 时区

/etc/localtime

4. 地区

5. 更新系统时钟

6. 软件时钟

7. 进程时间

#include 
clock_t times(struct tms *buf);
        Returns number of clock ticks (sysconf(_SC_CLK_TCK)) since “arbitrary” time in past on success, or (clock_t) –1 on error

8. 总结

第23章 定时器与休眠

1.间隔定时器setitimer和alarm

两个重要的结构体:定时器参数struct itimerval和表示时间struct timerval。

struct itimerval {
    struct timeval it_interval;     /* Interval for periodic timer */
    struct timeval it_value;        /* Current value (time until next expiration) */  为0则是一次性定时器。
};

struct timeval {
    time_t      tv_sec;             /* Seconds */
    suseconds_t tv_usec;            /* Microseconds (long int) */
};

setitimer和alarm原型:

#include
int setitimer(int which, const struct itimerval *new_value, struct itimerval *old_value);
    Returns 0 on success, or –1 on error
int getitimer(int which, struct itimerval *curr_value);
    Returns 0 on success, or –1 on error

#include
unsigned int alarm(unsigned int seconds);
    Always succeeds, returning number of seconds remaining on any previously set timer, or 0 if no timer previously was set

setitimer可以指定三种不同类型定时器:ITIMER_REAL(SIGALARM)、ITIMER_VIRTUAL(SIGVTALRM)、ITIMER_PROF(SIGPROF)。

  • 进程可以拥有三种定时器,但是每种只能设置一个。
  • 只能通过发送信号的方式来通知定时器到期,也不能改变到期信号时产生的信号。
  • alarm()和setitimer()针对同一进程共享同一实时定时器。
  • 三种定时器的参考时间不同,ITIMER_REAL(真实时间)、ITIMER_VIRTUAL(进程虚拟时间,用户CPU时间)、ITIMER_PROF(进程的用户和内核时间总和)。
  • 如果这些信号不设置处理函数,则默认会终止进程。
  • 如果一个间隔式定时器到期多次,且相应信号遭到阻塞时,那么只会调用一次信号处理函数。
  • 分辨率微秒级。

Notes:简单讲alarm基于setitimer,setitimer有三种形式。

两者的系统调用如下:

asmlinkage long sys_getitimer(int which, struct itimerval __user *value);
asmlinkage long sys_setitimer(int which,
                struct itimerval __user *value,
                struct itimerval __user *ovalue);
asmlinkage long sys_alarm(unsigned int seconds);

对应的原型在:

kernel/itimer.c
SYSCALL_DEFINE3(setitimer, int, which, struct itimerval __user *, value,
        struct itimerval __user *, ovalue)
SYSCALL_DEFINE2(getitimer, int, which, struct itimerval __user *, value)

kernel/timer.c
SYSCALL_DEFINE1(alarm, unsigned int, seconds)

从代码看alarm和setitimer之间的关系:

unsigned int alarm_setitimer(unsigned int seconds)
{
    struct itimerval it_new, it_old;

#if BITS_PER_LONG < 64
    if (seconds > INT_MAX)
        seconds = INT_MAX;
#endif
    it_new.it_value.tv_sec = seconds;----------------------------alarm精度是秒级,setitimer是微妙级别。
    it_new.it_value.tv_usec = 0;
    it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;

    do_setitimer(ITIMER_REAL, &it_new, &it_old);-----------------从这里可以看出alarm是setitimer的ITIMER_REAL形式,所以两者不能混用。容易造成混乱。

    /*
     * We can't return 0 if we have an alarm pending ...  And we'd
     * better return too much than too little anyway
     */
    if ((!it_old.it_value.tv_sec && it_old.it_value.tv_usec) ||
          it_old.it_value.tv_usec >= 500000)
        it_old.it_value.tv_sec++;

    return it_old.it_value.tv_sec;
}

do_setitimer/do_getitimer都对ITIMER_REAL、ITIMER_VIRTUAL、ITIMER_PROF分别进行了处理。这三个定时器都是内嵌在struct task_struct中:

ITIMER_REAL:借用task_struct->signal->real_timer,超时函数式it_real_fn。创建以真实时间倒计时的定时器,到期发送SIGALRM给进程。

ITIMER_VIRTUAL:task_struct->signal->it[CPUCLOCK_VIRT]。创建以进程虚拟时间(用户模式下CPU时间)倒计时的定时器,到期会产生信号SIGVTALRM。

ITIMER_PROF:task_struct->signal->it[CPUCLOCK_PROF]。创建一个profiling定时器,以进程时间(用户+内核CPU时间总和)倒计时。

setitimer和alarm异同?

  • alarm是setitimer的ITIMER_REAL形式
  • alarm精度为秒,setitimer为微妙级(但受受限于软件时钟的频率)
  • alarm只提供一次性实时定时器,setitimer可以提供周期性定时器。

 alarm基于setitimer,那么setitimer又是基于什么呢?

  ITIMER_REAL基于hrtimer,ITIMER_VIRTUAL和ITIMER_PROF基于POSIX CPU timer。这里重点看一下hrtimer相关内容。

  task_struct->signal->real_timer是由谁创建的?do_fork-->copy_process-->copy_signal-->hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL),超时函数是it_real_fn。

  注意这里hrtimer的两个参数时钟类型是CLOCK_MONOTONIC单调次增,防跳变;timer模式是HRTIMER_MODE_REL是一个相对时间。

enum hrtimer_restart it_real_fn(struct hrtimer *timer)
{
    struct signal_struct *sig =
        container_of(timer, struct signal_struct, real_timer);

    trace_itimer_expire(ITIMER_REAL, sig->leader_pid, 0);
    kill_pid_info(SIGALRM, SEND_SIG_PRIV, sig->leader_pid);--------发送SIFALRM给调用进程。

    return HRTIMER_NORESTART;
}

测试验证

  • 不同which差异?结果:同时触发,这三者占用的时间ITIMER_REAL< ITIMER_PROF
  • alarm和setitimer冲突问题?结果:alarm和ITIMER_REAL存在冲突,两者是基于同样的setitimer。
  • setitimer定时器只能存在一个?结果:可以三个,同一类型只能一个。


2.定时器的调度及精度

  • 系统可能会在定时器到期的瞬间之后才去调度其所属进程,这取决于当前负载和对进程的调度。
  • setitimer()定时器虽然可能延迟一定时间,但是后续的定时器仍然按照固定间隔。比如2秒定时器,2.3超时,下一个应该在4.3秒超时。
  • 虽然setitimer精度达到微妙,但是受制于软件时钟频率。比如jiffy为4ms,间隔为19100微妙,实际间隔是20ms。
  • 高分辨率定时器需要内核CONFIG_HIGH_RES_TIMERS。

3.为阻塞操作设置超时

4.休眠一段时间

低分辨率休眠sleep()

#include
unsigned int sleep(unsigned int seconds);
    如果休眠正常结束,返回0。如果被中断,返回剩余秒数。可能由于系统负载调度原因,会在sleep到时候才对进程重新加以调度。

高分辨率休眠nanosleep()

#define _POSIX_C_SOURCE 199309
#include
int nanosleep(const struct timespec *request, struct timespec *remain);
    Returns 0 on successfully completed sleep, or –1 on error or interrupted sleep

request指定了休眠持续时间,理论上精度可以达到纳秒级,但受制于软件时钟间隔。如果间隔并非间隔值,者向上取整。

nanosleep()不基于信号实现,但是可以通过型号处理函数来中断,如SIGINT(Ctrl-C)。
再被中断之后,剩余时间可以通过remain中获取。将remain赋给request,则可以继续睡眠剩余时间。


Notes: 

sleep、nanosleep、clock_nanosleep区别?

  • sleep睡眠秒级,nanosleep理论上可以到达纳秒级别(但受制于软件时钟间隔大小,会向上取整)
  • 部分系统sleep基于alram/setitimer来实现,nanosleep则不会使用信号实现函数
  • clock_nanosleep设置flags,TIMER_ABSTIME。
  • clock_nanosleep不同时钟来测量休眠间隔clockid。
  • nanosleep(HRTIMER_MODE_REL、CLOCK_MONOTONIC),clock_nanosleep(HRTIMER_MODE_ABS/ HRTIMER_MODE_REL、CLOCK_REALTIME/CLOCK_MONOTONIC/),TIMER_ABSTIME避免进程嗜睡问题。

如下sleep、usleep、nanosleep、clock_nanosleep代码可以看出区别:

libc/unistd/sleep.c
unsigned int sleep (unsigned int seconds)
{
    struct timespec ts = { .tv_sec = (long int) seconds, .tv_nsec = 0 };
    sigset_t set;
    struct sigaction oact;
    unsigned int result;
...
    /* Run nanosleep, with SIGCHLD blocked if SIGCHLD is SIG_IGNed.  */
    result = nanosleep (&ts, &ts);----------------------------------------基于nanosleep
    if (result != 0) {
        /* Got EINTR. Return remaining time.  */
        result = (unsigned int) ts.tv_sec + (ts.tv_nsec >= 500000000L);
    }
...
}

unsigned int sleep (unsigned int seconds)
{
    struct sigaction act, oact;
    sigset_t set, oset;
    unsigned int result, remaining;
    time_t before, after;
    int old_errno = errno;
...
    remaining = alarm(seconds);--------------------------------------------在没有定义REALTIME相关内容情况下,使用alarm实现。
...
    return result > seconds ? 0 : seconds - result;
}

libc/unistd/usleep.c
#if defined __UCLIBC_HAS_REALTIME__

int usleep (__useconds_t usec)
{
        const struct timespec ts = {
                .tv_sec = (long int) (usec / 1000000),
                .tv_nsec = (long int) (usec % 1000000) * 1000ul
        };
        return nanosleep(&ts, NULL);-----------------------------------根据REALTIME是否定义,是则基于nanosleep;否则基于select实现。
}
#else /* __UCLIBC_HAS_REALTIME__ */
int usleep (__useconds_t usec)
{
        struct timeval tv;

        tv.tv_sec = (long int) (usec / 1000000);
        tv.tv_usec = (long int) (usec % 1000000);
        return select(0, NULL, NULL, NULL, &tv);
}
#endif /* __UCLIBC_HAS_REALTIME__ */


kernel/hrtimer.c

SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
        struct timespec __user *, rmtp)
{
    struct timespec tu;

    if (copy_from_user(&tu, rqtp, sizeof(tu)))
        return -EFAULT;

    if (!timespec_valid(&tu))
        return -EINVAL;

    return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);---基于hrtimer_nanosleep的CLOCK_MONOTONIC时钟,相对时间。
}


kernel/posix-timer.c
SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
        const struct timespec __user *, rqtp,
        struct timespec __user *, rmtp)
{
    struct k_clock *kc = clockid_to_kclock(which_clock);
    struct timespec t;

    if (!kc)
        return -EINVAL;
    if (!kc->nsleep)
        return -ENANOSLEEP_NOTSUP;

    if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
        return -EFAULT;

    if (!timespec_valid(&t))
        return -EINVAL;

    return kc->nsleep(which_clock, flags, &t, rmtp);------------------------除了POSIX CPU Timer和AlarmTImer外,也是基于hrtimer_nanosleep,但是多了which_clock的选择。
}

测试验证

  • nanosleep能达到的精度?是多少?受制于hrtimer?用户空间很难精确测量精度,系统调用、进程调度都会影响到实际定时时间段。
  • sleep是否基于nanosleep?根据是否定义REALTIME功能来定。

通过strace查看sleep和nanosleep可以看出,sleep基于nanosleep实现。

《Linux/Unix系统编程手册》 时间子系统_第2张图片


  

5.POSIX时钟

POSIX时钟API必须以-lrt选项进行编译,从而与librt函数库链接,主要系统调用包括获取当前值的clock_gettime()、返回时钟分辨率的clock_getres()、以及更新时钟的clock_settime()。

要测定特定进程或线程所消耗的CPU时间,可以借助clock_getcpuclockid/pthread_getcpuclockid来获取时钟ID,接着再以此返回ID去调用clock_gettime(),从而获得进程或线程耗费的CPU时间。pid为0是,clock_getcpuclockid()返回调用进程的CPU时间时钟ID。

#define _POSIX_C_SOURCE 199309
#include
int clock_gettime(clockid_t clockid, struct timespec *tp);
int clock_getres(clockid_t clockid, struct timespec *res);
    Both return 0 on success, or –1 on error

int clock_settime(clockid_t clockid, const struct timespec *tp);
    Returns 0 on success, or –1 on error

int clock_getcpuclockid(pid_t pid, clockid_t *clockid);
    Returns 0 on success, or a positive error number on error

int pthread_getcpuclockid(pthread_t thread, clockid_t *clockid);
    Returns 0 on success, or a positive error number on error

int clock_nanosleep(clockid_t clockid, int flags, const struct timespec *request, struct timespec *remain);
    Returns 0 on successfully completed sleep or a positive error number on error or interrupted sleep

CLOCK_REALTIME时钟是一种系统级时钟,用于度量真实时间。

CLOCK_MONOTONIC系统启动后就不会发生改变,适用于那些无法容忍系统时钟发生跳跃性变化的应用。Linux上这种时钟对事件的测量食欲系统启动。

CLOCK_PROCESS_CPUTIME_ID时钟测量调用进程所消耗的用户和系统CPU时间。

CLOCK_THREAD_CPUTIME_ID时钟用于测量进程中单条线程的用户和系统CPU时间。

《Linux/Unix系统编程手册》 时间子系统_第3张图片

Linux特有的clock_nanosleep()系统调用也可以暂停调用进程,知道经理一段指定时间,亦或是收到信号才恢复运行。

int clock_nanosleep(clockid_t clockid, int flags, const struct timespec *request, struct timespec *remain);
Returns 0 on successfully completed sleep,or a positive error number on error or interrupted sleep

默认情况下(flags为0),request指定休眠间隔是相对时间;如果flags设定TIMER_ABSTIME,request则表示clockid时钟所测量的绝对时间。

相对时间嗜睡问题:如果只是先获取当前时间,计算与目标时间差距,再以相对时间进行休眠,进程可能执行到一半就奔抢占了,结果实际休眠时间回避预期要久。如果被信号处理函数中断并使用循环重启休眠,则“嗜睡”问题尤其明显。如果信号频率很高,则按相对时间休眠的进程则会有较大时间误差。

如何避免嗜睡:先调用clock_gettime()获取时间,加上期望休眠的时间量,再以TIMER_ABSTIME标识调用clock_nanosleep()函数。指定TIMER_ABSTIME,不再使用参数remain。如果信号中断clock_nanosleep()调用,再次调用该函数来重启休眠时,request参数不变。clock_nanosleep()和nanosleep()另一区别在可以选择不同的时钟来测量休眠间隔时间。


Notes:

在介绍POSIX时钟和定时器之前,先介绍一下POSIX都有那些类型的时钟。

CLOCK_REALTIME:可设定的系统级实时时钟。用于度量真实时间。

CLOCK_MONOTONIC :不可设定的恒定态时钟。系统启动后就不会发生改变。

CLOCK_PROCESS_CPUTIME_ID:每进程CPU时间的时钟。测量调用进程所消耗的用户和系统CPU时间。

CLOCK_THREAD_CPUTIME_ID:每线程CPU时间的时钟。测量调用线程所消耗的用户和系统CPU时间。

CLOCK_MONOTONIC_RAW:提供了对纯基于硬件时间的访问。不受NTP时间调整的影响。

CLOCK_REALTIME_COARSE:类似于CLOCK_REALTIME,适用于希望以最小代价获取较低分辨率时间戳的程序。返回值分辨率为jiffy。

CLOCK_MONOTONIC_COARSE:类似于CLOCK_MONOTONIC,适用于希望以最小代价获取较低分辨率时间戳的程序。返回值分辨率为jiffy。

CLOCK_BOOTTIME:

CLOCK_REALTIME_ALARM:

CLOCK_BOOTTIME_ALARM:

kernel/posix-timer.c

SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,----------------设置POSIX时间,调用k_clock->clock_set
        const struct timespec __user *, tp)
SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,----------------获取POSIX时间,调用k_clock->clock_get
        struct timespec __user *,tp)
SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,----------------调整时间,调用k_clock->clock_adj
        struct timex __user *, utx)
SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,-----------------获取时钟精度,由硬件决定,调用k_clock->clock_getres
        struct timespec __user *, tp)
SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,--睡眠纳秒数,调用k_clock->nsleep
        const struct timespec __user *, rqtp,
        struct timespec __user *, rmtp)

clock_getcpuclockid

CLOCK_PROCESS_CPUTIME_ID类型的clock_gettime

pthread_getcpuclockid

CLOCK_THREAD_CPUTIME_ID类型的clock_gettime


6.POSIX间隔式定时器

编译时需要使用-lrt选项。

#define _POSIX_C_SOURCE 199309
#include
#include
int timer_create(clockid_t clockid, struct sigevent *evp,timer_t *timerid);
    Returns 0 on success, or –1 on error

int timer_settime(timer_t timerid, int flags,const struct itimerspec *value, struct itimerspec *old_value);
    Returns 0 on success, or –1 on error

int timer_gettime(timer_t timerid, struct itimerspec *curr_value);
    Returns 0 on success, or –1 on error

int timer_delete(timer_t timerid);
    Returns 0 on success, or –1 on error

int timer_getoverrun(timer_t timerid);
    Returns timer overrun count on success, or –1 on error

POSIX定时器API生命周期阶段如下:

  • 创建定时器timer_create(),并定义到期时对进程的通知方法,函数返回参数timerid所指向的缓冲区中放置定时器句柄,供后续调用中指代该定时器之用。timer_t用于标识定时器。
  • 启动/停止定时器timer_settime()。
  • 获取定时器当前值timer_gettime(),返回由timerid指定的间隔以及剩余时间。
  • 获取定时器溢出值timer_getoverrun()。
  • 删除定时器timer_delete(),对于已启动的定时器,会在移除前自动将其停止;如果定时器因到期已经在待定(pending),那么信号会保持这一状态;如果进程终止,会自动删除所有定时器。

 Notes:

kernel/posix-timers.c中:
SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,-----创建timer,时钟基准which_clock
        struct sigevent __user *, timer_event_spec,
        timer_t __user *, created_timer_id)
SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,---------------获取timer剩余时间
        struct itimerspec __user *, setting)
SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)------------获取timer当前值,时间间隔以及剩余时间
SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,---启动或停止timer
        const struct itimerspec __user *, new_setting,
        struct itimerspec __user *, old_setting)
SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)----------------删除timer

POSIX定时器分为三类,初始化路径如下:

init_posix_timers--> posix_timers_register_clock-|-> CLOCK_REALTIME
                                        |-> CLOCK_MONOTONIC
                                        |-> CLOCK_MONOTONIC_RAW
                                        |-> CLOCK_REALTIME_COARSE
                                        |-> CLOCK_MONOTONIC_COARSE
                                        |-> CLOCK_BOOTTIME
alarmtimer_init-->posix_timers_register_clock-|->CLOCK_REALTIME_ALARM
                                      |->CLOCK_BOOTTIME_ALARM
init_posix_cpu_timers-->posix_timers_register_clock-|->CLOCK_PROCESS_CPUTIME_ID
                                            |->CLOCK_THREAD_CPUTIME_ID

从posix_timers_register_clock可知,每个clock都必须具备clock_get和clock_getres,然后加入posix_clocks。 

void posix_timers_register_clock(const clockid_t clock_id,
                 struct k_clock *new_clock)
{
    if ((unsigned) clock_id >= MAX_CLOCKS) {
        printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
               clock_id);
        return;
    }

    if (!new_clock->clock_get) {
        printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
               clock_id);
        return;
    }
    if (!new_clock->clock_getres) {---------------------------------------clock_get和clock_getres必备
        printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
               clock_id);
        return;
    }

    posix_clocks[clock_id] = *new_clock;----------------------------------posix_clocks保存所有相关timer信息
}

结构体k_clock提供了关于clock的操作函数,clock_getres/clock_set/clock_get/clock_adj/nsleep/nsleep_restart对应POSIX时钟系统调用;timer_create/timer_set/timer_del/timer_get对应POSIX定时器。

struct k_clock {
    int (*clock_getres) (const clockid_t which_clock, struct timespec *tp);
    int (*clock_set) (const clockid_t which_clock,
              const struct timespec *tp);
    int (*clock_get) (const clockid_t which_clock, struct timespec * tp);
    int (*clock_adj) (const clockid_t which_clock, struct timex *tx);
    int (*timer_create) (struct k_itimer *timer);
    int (*nsleep) (const clockid_t which_clock, int flags,
               struct timespec *, struct timespec __user *);
    long (*nsleep_restart) (struct restart_block *restart_block);
    int (*timer_set) (struct k_itimer * timr, int flags,
              struct itimerspec * new_setting,
              struct itimerspec * old_setting);
    int (*timer_del) (struct k_itimer * timr);
#define TIMER_RETRY 1
    void (*timer_get) (struct k_itimer * timr,
               struct itimerspec * cur_setting);
};

 系统调用和k_clock对应关系:

syscall

k_clock

clock_getres

clock_getres

clock_settime

clock_set

clock_gettime

clock_get

clock_adjtime

clock_adj

clock_nanosleep

nsleep/nsleep_restart

timer_create

timer_create

timer_gettime

timer_get

timer_getoverrun

timer_settime

timer_set

timer_delete

timer_del

从上面的POSIX定时器初始化可以看出分为三类:POSIX定时器、POSIX Alarm定时器、POSIX CPU时间定时器。

k_itimer是POSIX定时器结构体,从其it union可以看出有real、cpu、alarm、mmtimer几种类型的定时器。

struct k_itimer {
    struct list_head list;        /* free/ allocate list */
    spinlock_t it_lock;
    clockid_t it_clock;        /* which timer type */
    timer_t it_id;            /* timer id */
    int it_overrun;            /* overrun on pending signal  */
    int it_overrun_last;        /* overrun on last delivered signal */
    int it_requeue_pending;        /* waiting to requeue this timer */
#define REQUEUE_PENDING 1
    int it_sigev_notify;        /* notify word of sigevent struct */
    struct signal_struct *it_signal;
    union {
        struct pid *it_pid;    /* pid of process to send signal to */
        struct task_struct *it_process;    /* for clock_nanosleep */
    };
    struct sigqueue *sigq;        /* signal queue entry. */
    union {
        struct {
            struct hrtimer timer;
            ktime_t interval;
        } real;
        struct cpu_timer_list cpu;
        struct {
            unsigned int clock;
            unsigned int node;
            unsigned long incr;
            unsigned long expires;
        } mmtimer;
        struct {
            struct alarm alarmtimer;
            ktime_t interval;
        } alarm;
        struct rcu_head rcu;
    } it;
};

 kernel/posix-timers.c

CLOCK_REALTIME/ CLOCK_MONOTONIC/CLOCK_BOOTTIME三种时钟不但提供时钟功能,还提供定时器功能。这三种定时器都是基于hrtimer实现的。

CLOCK_MONOTONIC_RAW/CLOCK_REALTIME_COARSE/CLOCK_MONOTONIC_COARSE三种类型的时钟只提供获取时间和获取精度接口。

 kernel/posix-cpu-timers.c

CLOCK_PROCESS_CPUTIME_ID/ CLOCK_THREAD_CPUTIME_ID

只提供了timer_create接口,没有timer_set等。

    struct k_clock process = {
        .clock_getres    = process_cpu_clock_getres,
        .clock_get    = process_cpu_clock_get,
        .timer_create    = process_cpu_timer_create,
        .nsleep        = process_cpu_nsleep,
        .nsleep_restart    = process_cpu_nsleep_restart,
    };
    struct k_clock thread = {
        .clock_getres    = thread_cpu_clock_getres,
        .clock_get    = thread_cpu_clock_get,
        .timer_create    = thread_cpu_timer_create,
    };

 kernel/time/alarmtimer.c

CLOCK_REALTIME_ALARM/CLOCK_BOOTTIME_ALARM 

    struct k_clock alarm_clock = {
        .clock_getres    = alarm_clock_getres,
        .clock_get    = alarm_clock_get,
        .timer_create    = alarm_timer_create,
        .timer_set    = alarm_timer_set,
        .timer_del    = alarm_timer_del,
        .timer_get    = alarm_timer_get,
        .nsleep        = alarm_timer_nsleep,
    };

系统在suspend时,也会执行alarmtimer设备的suspend。在系统即将进入睡眠时,查找alarm_bases(包括ALARM_REALTIME和ALARM_BOOTTIME)的timerqueue,找出最近一次要超时的timer。将这个timer转换成RTC Timer,这样就会将系统从suspend状态唤醒。

/* Suspend hook structures */

static const struct dev_pm_ops alarmtimer_pm_ops = {

       .suspend = alarmtimer_suspend,

};

static struct platform_driver alarmtimer_driver = {

       .driver = {

              .name = "alarmtimer",

              .pm = &alarmtimer_pm_ops,

       }

};

和传统定时器相比POSIX的优势?

  • 传统setitimer定时器只有三种定时器,每种只能设置一个。timer_create可以提供多种类型(include/linux/time.h CLOCK_REALTIME…),每种类型多个定时器共存。
  • 只能通过发送信号来通知定时器到期。timer_create的evp参数决定定时器到期通知方式,SIGEV_NONE、SIGEV_SIGNAL、SIGEV_THREAD、SIGEV_THREAD_ID。可以选择通过执行线程函数来获取定时器通知。
  • 如果一个间隔式定时器到期多次,且响应信号遭到阻塞是,只调用一次信号处理函数。无从知晓定时器是否溢出。timer_getoverrun可以获知超时定时器数目。
  • setitimer定时器分辨率只能达到微妙级。POSIX定时器提供纳秒级。

下面整理一下不同定时器ID、定时器时钟基准、获取时间函数:

定时器ID 定时器时钟 延时 时间函数 是否具备唤醒

是否计算

suspend时间

CLOCK_REALTIME HRTIMER_BASE_REALTIME common_nsleep posix_clock_realtime_get X X
CLOCK_REALTIME_COARSE X X posix_get_realtime_coarse X X
CLOCK_REALTIME_ALARM HRTIMER_BASE_REALTIME alarm_timer_nsleep alarm_clock_get X
CLOCK_MONOTONIC HRTIMER_BASE_MONOTONIC common_nsleep posix_ktime_get_ts X X
CLOCK_MONOTONIC_RAW X X posix_get_monotonic_raw X X
CLOCK_MONOTONIC_COARSE X X posix_get_monotonic_coarse X X
CLOCK_BOOTTIME HRTIMER_BASE_BOOTTIME common_nsleep posix_get_boottime X
CLOCK_BOOTTIME_ALARM HRTIMER_BASE_BOOTTIME alarm_timer_nsleep alarm_clock_get
CLOCK_PROCESS_CPUTIME_ID X process_cpu_nsleep process_cpu_clock_get X X
CLOCK_THREAD_CPUTIME_ID X X thread_cpu_clock_get X X

测试验证

  • POSIX不同类型的定时器区别?归根结底还是基础时钟的不同,还有是否具备_ALARM。
  • 多个POSIX定时器共存?可以多个定时器共存。


7.文件描述符定时器:timerfd API

Linux特有的timerfd API,可以从文件描述符中读取其所创建定时器的到期通知,也可以用使用select()、poll()、epoll()监控。

#include
int timerfd_create(int clockid, int flags);
clockid可以设置为CLOCK_REALTIME或者CLOCK_MONOTONIC。
相当于open创建一个句柄,可以使用close()关闭响应文件描述符。

int timerfd_settime(int fd, int flags, const struct itimerspec *new_value, struct itimerspec *old_value);
int timerfd_gettime(int fd, struct itimerspec *curr_value);

timerfd_settime()启动了定时器,可以通过read()来读取定时器到期信息。read缓冲区必须容纳uint64_t类型,读取返回值是已发生的到期次数。

执行./demo_timerfd 1:1 100,使用Ctrl-Z将其变成挂起到背景执行,fg拉倒前台,Ctrl-C终止执行。可以看出在背景执行期间有10此到期。

./demo_timerfd 1:1 100
1.000: expirations read: 1; total=1
2.000: expirations read: 1; total=2
3.000: expirations read: 1; total=3
4.000: expirations read: 1; total=4
^Z
[2]+  Stopped                 ./demo_timerfd 1:1 100
fg
./demo_timerfd 1:1 100
14.734: expirations read: 10; total=14
15.000: expirations read: 1; total=15
16.000: expirations read: 1; total=16
17.000: expirations read: 1; total=17
18.000: expirations read: 1; total=18
^Z
[2]+  Stopped                 ./demo_timerfd 1:1 100


Notes:

fs/timerfd.c
SYSCALL_DEFINE2(timerfd_create, int, clockid, int, flags)--------------------------(1)
SYSCALL_DEFINE4(timerfd_settime, int, ufd, int, flags,-----------------------------(2)
        const struct itimerspec __user *, utmr,
        struct itimerspec __user *, otmr)
SYSCALL_DEFINE2(timerfd_gettime, int, ufd, struct itimerspec __user *, otmr)-------(3)

 (1)

clockid可以设置为:CLOCK_REALTIME或CLOCK_MONOTONIC。

flags可设置为:TFD_CLOEXEC(Close on Exec,fork不被关闭)或者TFD_NONBLOCK(读操作是非阻塞式的)。

timerfd使用close关闭。

(2)flags为哦,则it_value视为始于timer_settime调用时间点的相对值。TFD_TIMER_ABSTIME则将其视为一个绝对时间(从时钟0点开始测量)。

(3)

timerfd和POSIX timer异同?

  • timerfd也是基于hrtimer的
  • 可以从文件描述符中获取定时器通知,还可使用select()、poll()、epoll()来监控这些描述符。


8.总结

setitimer()和alarm()设定定时器,以便于在经历指定的一段实际时间后收到信号通知。

sleep()和nano_sleep()指定程序暂停执行一段特定间隔的实际时间。

POSIX时钟API包括clock_gettime()、clock_getres()、clock_settime()、clock_getcpuclockid()、pthread_getcpuclockid()以及高分辨率clock_nanosleep(),这些函数提供个更丰富的时钟类型。

POSIX定时器API包括timer_create()、timer_settime()、timer_gettime、timer_getoverrun()、timer_delete,这些函数客服了setitimer()一系列缺陷,可以创建多个timer、获取timer溢出情况、设置不同触发方式。

timerfd_create()、timerfd_settime()、timerfd_gettime()提供一组创建定时器的接口,允许从文件秒速附中读取特定定时器通知。可以使用read()、select()、poll()、epoll()、close()来操作这些描述符。


和时间相关的库:

libc

librt

void getnstimeofday(struct timespec *ts)
{
    unsigned long seq;
    s64 nsecs;

    WARN_ON(timekeeping_suspended);

    do {
        seq = read_seqbegin(&timekeeper.lock);

        *ts = timekeeper.xtime;
        nsecs = timekeeping_get_ns();
        printk("%s ts->tv_sec=%ld, ts->tv_nsec=%9ld, nsecs=%lld", ts->tv_sec, ts->tv_nsec, nsecs);

        /* If arch requires, add in gettimeoffset() */
        nsecs += arch_gettimeoffset();
        printk("%s ts->tv_sec=%ld, ts->tv_nsec=%9ld, nsecs=%lld", ts->tv_sec, ts->tv_nsec, nsecs);
    } while (read_seqretry(&timekeeper.lock, seq));

    timespec_add_ns(ts, nsecs);
}

libc/librt函数名 系统调用 hrtimer_clock_base/mode 是否计入suspend 是否具备唤醒 RUN/IDLE/Suspend 注释

延                                                                                      时

sleep nanosleep

CLOCK_MONOTONIC

HRTIMER_MODE_REL

X X
usleep X X
nanosleep X X
clock_nanosleep CLOCK_REALTIME  X X
CLOCK_MONOTONIC  X X
CLOCK_BOOTTIME  √ X
CLOCK_REALTIME_ALARM
CLOCK_BOOTTIME_ALARM

定                                                时                                                器

alarm

setitimer

  ITIMER_REAL

(ITIMER_VIRTUAL、

ITIMER_PROF)

ITIMER_REAL基于hrtimer的:

CLOCK_MONOTONIC/HRTIMER_MODE_REL

  X   X  由do_fork-->copy_process-->copy_signal创建hrtimer
...
...
timer_create/timer_settime/timer_gettime  CLOCK_REALTIME X X
 CLOCK_MONOTONIC X X
 CLOCK_BOOTTIME X
 CLOCK_REALTIME_ALARM
 CLOCK_BOOTTIME_ALARM
获                                取                                时                                间
time  gettimeofday do_gettimeofday-->getnstimeofday    

void getnstimeofday(struct timespec *ts)
{
    unsigned long seq;
    s64 nsecs;

    WARN_ON(timekeeping_suspended);

    do {
        seq = read_seqbegin(&timekeeper.lock);

        *ts = timekeeper.xtime;
        nsecs = timekeeping_get_ns();
/* If arch requires, add in gettimeoffset() */
        nsecs += arch_gettimeoffset();
    } while (read_seqretry(&timekeeper.lock, seq));

    timespec_add_ns(ts, nsecs);
}

timekeeper.xtime

timekeeping_get_ns

arch_gettimeoffset()

gettimeofday
clock_gettime/clock_settime   CLOCK_REALTIME ktime_get_real_ts-->getnstimeofday
CLOCK_MONOTONIC ktime_get_ts  

void ktime_get_ts(struct timespec *ts)
{
    struct timespec tomono;
    unsigned int seq;
    s64 nsecs;

    WARN_ON(timekeeping_suspended);

    do {
        seq = read_seqbegin(&timekeeper.lock);
        *ts = timekeeper.xtime;
        tomono = timekeeper.wall_to_monotonic;
        nsecs = timekeeping_get_ns();
        /* If arch requires, add in gettimeoffset() */
        nsecs += arch_gettimeoffset();

    } while (read_seqretry(&timekeeper.lock, seq));

    set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
                ts->tv_nsec + tomono.tv_nsec + nsecs);
}

timekeeper.xtime

timekeeper.wall_to_monotonic

timekeeping_get_ns()

arch_gettimeoffset()

CLOCK_BOOTTIME get_monotonic_boottime  

void get_monotonic_boottime(struct timespec *ts)
{
    struct timespec tomono, sleep;
    unsigned int seq;
    s64 nsecs;

    WARN_ON(timekeeping_suspended);

    do {
        seq = read_seqbegin(&timekeeper.lock);
        *ts = timekeeper.xtime;
        tomono = timekeeper.wall_to_monotonic;
        sleep = timekeeper.total_sleep_time;
        nsecs = timekeeping_get_ns();

    } while (read_seqretry(&timekeeper.lock, seq));

    set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
        (s64)ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
}

 

timekeeper.xtime
timekeeper.wall_to_monotonic
timekeeper.total_sleep_time
timekeeping_get_ns()

CLOCK_MONOTONIC_RAW getrawmonotonic  

void getrawmonotonic(struct timespec *ts)
{
    unsigned long seq;
    s64 nsecs;

    do {
        seq = read_seqbegin(&timekeeper.lock);
        nsecs = timekeeping_get_ns_raw();
        *ts = timekeeper.raw_time;

    } while (read_seqretry(&timekeeper.lock, seq));

    timespec_add_ns(ts, nsecs);
}

timekeeper.raw_time

timekeeping_get_ns_raw()

CLOCK_REALTIME_COARSE current_kernel_time  

struct timespec current_kernel_time(void)
{
    struct timespec now;
    unsigned long seq;

    do {
        seq = read_seqbegin(&timekeeper.lock);

        now = timekeeper.xtime;
    } while (read_seqretry(&timekeeper.lock, seq));

    return now;
}

 
timekeeper.xtime
 CLOCK_MONOTONIC_COARSE get_monotonic_coarse  

struct timespec get_monotonic_coarse(void)
{
    struct timespec now, mono;
    unsigned long seq;

    do {
        seq = read_seqbegin(&timekeeper.lock);

        now = timekeeper.xtime;
        mono = timekeeper.wall_to_monotonic;
    } while (read_seqretry(&timekeeper.lock, seq));

    set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
                now.tv_nsec + mono.tv_nsec);
    return now;
}

 

timekeeper.xtime
timekeeper.wall_to_monotonic

CLOCK_REALTIME_ALARM ktime_get_real-->getnstimeofday  同CLOCK_REALTIME
CLOCK_BOOTTIME_ALARM ktime_get_boottime-->get_monotonic_boottime  同CLOCK_BOOTTIME
  /proc/uptime

uptime:do_posix_clock_monotonic_gettime(ktime_get_ts)+monotonic_to_bootbased

idletime:kernel_cpustat.cpustat[CPUTIMEIDLE]

uptime:

idletime:CPU idle时间总和

timekeeper.xtime

timekeeper.wall_to_monotonic

timekeeper.total_sleep_time

timekeeping_get_ns()

arch_gettimeoffset()

 总结:

1.上述关于时间获取的函数

timekeeper.xtime------------------------------------------墙上时间,全局变量struct timekeeper timerkeeper的成员。记录从Epoch到当前的时间差。

timekeeper.wall_to_monotonic-------------------------monotonic到xtime的偏移量,wall_to_monotonic+xtime等与monotonic时间

timekeeper.total_sleep_time----------------------------记录系统suspend时间

timekeeper.raw_time-------------------------------------

timekeeping_get_ns()------------------------------------clock->cycle_last记录了最近一次时钟读取的cycle数,timekeeping_get_ns返回的是上次读取到本次读取之间的时间差值。

timekeeping_get_ns_raw()-----------------------------和timekeeping_get_ns类似,只是mult/shift基准不同。

arch_gettimeoffset()--------------------------------------架构相关调用system_timer->offset(),如未实现则返回0.

xtime wall_to_monotonic total_sleep_time raw_time timekeeping_get_ns timekeeping_get_ns_raw arch_gettimeoffset
time  √  √  √
gettimeofday
CLOCK_REALTIME
CLOCK_REALTIME_ALARM
CLOCK_MONOTONIC
CLOCK_MONOTONIC_RAW
CLOCK_REALTIME_COARSE
CLOCK_MONOTONIC_COARSE
CLOCK_BOOTTIME
CLOCK_BOOTTIME_ALARM
/proc/uptime

1.1 time、gettimeofday、CLOCK_REALTIME*都包含了睡眠时间,不过精度不同,分别是秒、微妙、纳秒。时间起点是Epoch。

1.2 CLOCK_BOOTTIME*也包含了睡眠时间,精度为纳秒。时间起点是内核开机。

1.3 CLOCK_MONOTONIC时间起点也是内核开机,只不过不记录睡眠时间。

下面是时间一次测试的结果:

《Linux/Unix系统编程手册》 时间子系统_第4张图片

2. 关于延时函数

2.1 sleep精度为秒,nanosleep精度为纳秒。sleep是使用nanosleep还是alarm依赖于库的实现,使用需谨慎。两周都不计入suspend时间,也不能唤醒系统。

2.2 clock_nanosleep的CLOCK_BOOTTIME计入suspend时间,但是不具备唤醒功能。在超时后,如果系统唤醒立即执行。

 2.3 clock_nanosleep的CLOCK_REALTIME_ALARM和CLOCK_BOOTTIME_ALARM计入suspend时间,并且在超时后具备唤醒系统的能力。需要root权限。

2.4 sleep和nanosleep再被中断频繁中断,然后重新sleep都无法避免嗜睡问题。clock_nanosleep可以通过设置TIMER_ABSTIME来避免嗜睡问题。

3. 关于定时器

3.1 alarm()和setitimer()精度分别为秒和微秒。但是由于alarm是调用setitimer,所以两者不能混用。后调用者会覆盖前者。

3.2 POSIX定时器精度为纳秒,可以多定时器、多种类型定时器共存。

3.3 POSIX的CLOCK_BOOTTIME将suspend 时间计入,但不具备唤醒功能,超时后只能在系统唤醒后立即执行。

3.4 POSIX的CLOCK_REALTIME_ALARM和CLOCK_BOOTTIME_ALARM都将suspend时间计入,并且能唤醒系统。需要root。


 测试代码:

#define _POSIX_C_SOURCE 199309
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#define CLOCK_REALTIME                0
#define CLOCK_MONOTONIC                1
#define CLOCK_PROCESS_CPUTIME_ID    2
#define CLOCK_THREAD_CPUTIME_ID        3
#define CLOCK_MONOTONIC_RAW            4
#define CLOCK_REALTIME_COARSE        5
#define CLOCK_MONOTONIC_COARSE        6
#define CLOCK_BOOTTIME                7
#define CLOCK_REALTIME_ALARM        8
#define CLOCK_BOOTTIME_ALARM        9


#define TIMER_SIG SIGRTMAX              /* Our timer notification signal */
#define BUF_SIZE 256

char *
currTime(const char *format)
{
    char buf_local[BUF_SIZE];  /* Nonreentrant */
    time_t t;
    size_t s;
    struct tm *tm;

    t = time(NULL);
    tm = localtime(&t);
    if (tm == NULL)
        return NULL;

    s = strftime(buf_local, BUF_SIZE, (format != NULL) ? format : "%c", tm);

    return (s == 0) ? NULL : buf_local;
}

void print_buf(char *buf)
{
    time_t t;
    size_t s;
    struct tm *tm;

    t = time(NULL);
    tm = localtime(&t);
    if (tm == NULL)
        return;

    s = strftime(buf, sizeof(buf), "%T", tm);
}

void print_time_t(time_t *t)
{
    printf("time_t=%ld\n", *t);    
}

void print_timeval(struct timeval *tv)
{
    printf("timeval=%ld.%6ld\n", tv->tv_sec, tv->tv_usec);    
}

void print_timespec(char * head, struct timespec *ts)
{
    printf("%s timespec=%ld.%9ld\n", head, ts->tv_sec, ts->tv_nsec);    
}

static void *sleep_func(void *arg)
{
    printf("[%s] Start %s\n", currTime("%T"), __func__);
    sleep(60);
    printf("[%s] End %s\n", currTime("%T"), __func__);
}

static void *nanosleep_func(void *arg)
{
    struct timespec request, remain;
    int ret = 0;
    
    printf("[%s] Start %s\n", currTime("%T"), __func__);
    request.tv_sec = 60;
    request.tv_nsec = 0;
    ret = nanosleep(&request, &remain);
    if (ret != 0 && ret != EINTR)
        printf("Error %s\n", __func__);
    printf("[%s] End %s\n", currTime("%T"), __func__);
}


static void *clock_nanosleep_CLOCK_REALTIME_func(void *arg)
{
    struct timespec request, remain;
    int ret, flags = 0;
    
    
    printf("[%s] Start %s\n", currTime("%T"), __func__);
    request.tv_sec = 60;
    request.tv_nsec = 0;
    ret = clock_nanosleep(CLOCK_REALTIME, flags, &request, &remain);
    if (ret != 0 && ret != EINTR)
        printf("Error %s\n", __func__);
    printf("[%s] End %s\n", currTime("%T"), __func__);
}

static void *clock_nanosleep_CLOCK_REALTIME_ALARM_func(void *arg)
{
    struct timespec request, remain;
    int ret, flags = 0;
    
    
    printf("[%s] Start %s\n", currTime("%T"), __func__);
    request.tv_sec = 90;
    request.tv_nsec = 0;
    ret = clock_nanosleep(CLOCK_REALTIME_ALARM, flags, &request, &remain);
    if (ret != 0 && ret != EINTR)
        printf("Error %s\n", __func__);
    printf("[%s] End %s\n", currTime("%T"), __func__);
}

static void *clock_nanosleep_CLOCK_MONOTONIC_func(void *arg)
{
    struct timespec request, remain;
    int ret, flags = 0;
    
    
    printf("[%s] Start %s\n", currTime("%T"), __func__);
    request.tv_sec = 60;
    request.tv_nsec = 0;
    ret = clock_nanosleep(CLOCK_MONOTONIC, flags, &request, &remain);
    if (ret != 0 && ret != EINTR)
        printf("Error %s\n", __func__);
    printf("[%s] End %s\n", currTime("%T"), __func__);
}

static void *clock_nanosleep_CLOCK_BOOTTIME_func(void *arg)
{
    struct timespec request, remain;
    int ret, flags = 0;
    
    
    printf("[%s] Start %s\n", currTime("%T"), __func__);
    request.tv_sec = 60;
    request.tv_nsec = 0;
    ret = clock_nanosleep(CLOCK_BOOTTIME, flags, &request, &remain);
    if (ret != 0 && ret != EINTR)
        printf("Error %s\n", __func__);
    printf("[%s] End %s\n", currTime("%T"), __func__);
}


static void *clock_nanosleep_CLOCK_BOOTTIME_ALARM_func(void *arg)
{
    struct timespec request, remain;
    int ret, flags = 0;

    printf("[%s] Start %s\n", currTime("%T"), __func__);
    request.tv_sec = 60;
    request.tv_nsec = 0;
    ret = clock_nanosleep(CLOCK_BOOTTIME_ALARM, flags, &request, &remain);
    if (ret != 0 && ret != EINTR)
        printf("Error %s\n", __func__);
    printf("[%s] End %s\n", currTime("%T"), __func__);
}

static void alarm_handler(int sig)
{
    printf("\n[%s] %s sig=%d\n", currTime("%T"), __func__, sig);
}

static void realtime_handler(int sig, siginfo_t *si, void *uc)
{
    timer_t *tidptr;

    tidptr = si->si_value.sival_ptr;
    printf("\n[%s] %s sig=%d\n", currTime("%T"), __func__, sig);
}

static void monotonic_handler(int sig, siginfo_t *si, void *uc)
{
    timer_t *tidptr;

    tidptr = si->si_value.sival_ptr;
    printf("\n[%s] %s sig=%d\n", currTime("%T"), __func__, sig);
}

static void boottime_handler(int sig, siginfo_t *si, void *uc)
{
    timer_t *tidptr;

    tidptr = si->si_value.sival_ptr;
    printf("\n[%s] %s sig=%d\n", currTime("%T"), __func__, sig);
}

static void realtime_alarm_handler(int sig, siginfo_t *si, void *uc)
{
    timer_t *tidptr;

    tidptr = si->si_value.sival_ptr;
    printf("\n[%s] %s sig=%d\n", currTime("%T"), __func__, sig);
}

static void boottime_alarm_handler(int sig, siginfo_t *si, void *uc)
{
    timer_t *tidptr;

    tidptr = si->si_value.sival_ptr;
    printf("\n[%s] %s sig=%d\n", currTime("%T"), __func__, sig);
}

int posix_timer_start(timer_t timer, clockid_t which_clock, struct sigevent *sev, struct itimerspec *ts)
{
    if (timer_create(which_clock, sev, &timer) == -1)
    {
        printf("Error timer_create %d\n", which_clock);
        return -1;
    }
    if (timer_settime(timer, 0, ts, NULL) == -1)
    {
        printf("Error timer_settime %d\n", which_clock);
        return -1;
    }
}

//#define TEST_TIME
//#define TEST_SLEEP
#define TEST_TIMER

int
main(int argc, char *argv[])
{


#if 0---------------------------------------------------------------------------------------------------------------读取进程的capabilities,_ALARM需要WAKEUP能力。
    struct __user_cap_header_struct cap_header;
    struct __user_cap_data_struct cap_data[2];

    cap_header.pid = getpid();
    cap_header.version = _LINUX_CAPABILITY_VERSION_3;
    if( capget(&cap_header, cap_data) < 0)
    {
        printf("%s\n", strerror(errno));
        exit(EXIT_FAILURE);
    }

    printf("capheader: %x  %d\n", cap_header.version, cap_header.pid);  
    printf("capdata: %x  %x  %x\n", cap_data[0].effective, cap_data[0].permitted, cap_data[0].inheritable);
    printf("capdata: %x  %x  %x\n", cap_data[1].effective, cap_data[1].permitted, cap_data[1].inheritable);
#endif

//**********************************************Get time Test********************************************************
#ifdef TEST_TIME
    struct timespec clock_ts;
    struct timeval tv;
    time_t t;

    t = time(NULL); ---------------------------------------------------------------------------------------time
    print_time_t(&t);

    if(gettimeofday(&tv, NULL) == -1)----------------------------------------------------------------------gettimeofday
        printf("Error gettimeofday.\n");
    print_timeval(&tv);

    clock_gettime(CLOCK_REALTIME, &clock_ts);  print_timespec("CLOCK_REALTIME", &clock_ts);----------------clock_gettime...
    clock_gettime(CLOCK_MONOTONIC, &clock_ts); print_timespec("CLOCK_MONOTONIC", &clock_ts);
    clock_gettime(CLOCK_MONOTONIC_RAW, &clock_ts);  print_timespec("CLOCK_MONOTONIC_RAW", &clock_ts);
    clock_gettime(CLOCK_REALTIME_COARSE, &clock_ts);  print_timespec("CLOCK_REALTIME_COARSE", &clock_ts);
    clock_gettime(CLOCK_MONOTONIC_COARSE, &clock_ts);  print_timespec("CLOCK_MONOTONIC_COARSE", &clock_ts);
    clock_gettime(CLOCK_BOOTTIME, &clock_ts);  print_timespec("CLOCK_BOOTTIME", &clock_ts);
    clock_gettime(CLOCK_REALTIME_ALARM, &clock_ts);  print_timespec("CLOCK_REALTIME_ALARM", &clock_ts);
    clock_gettime(CLOCK_BOOTTIME_ALARM, &clock_ts);  print_timespec("CLOCK_BOOTTIME_ALARM", &clock_ts);
#endif
//*******************************************************************************************************************


//***********************************************Delay Test**********************************************************
#ifdef TEST_SLEEP
    pthread_t pthread_sleep, pthread_nanosleep, pthread_clock_nanosleep_1, pthread_clock_nanosleep_2, pthread_clock_nanosleep_3, pthread_clock_nanosleep_4, pthread_clock_nanosleep_5;
    int ret;
    
    ret = pthread_create(&pthread_sleep, NULL, sleep_func, "sleep");----------------------------------------------在不同线程中睡眠
    if(ret != 0)
        printf("pthread_create ret=%d\n", ret);
    
    ret = pthread_create(&pthread_nanosleep, NULL, nanosleep_func, "sleep");
    if(ret != 0)
        printf("pthread_create ret=%d\n", ret);
    
    ret = pthread_create(&pthread_clock_nanosleep_1, NULL, clock_nanosleep_CLOCK_REALTIME_func, "sleep");
    if(ret != 0)
        printf("pthread_create ret=%d\n", ret);
    
    ret = pthread_create(&pthread_clock_nanosleep_2, NULL, clock_nanosleep_CLOCK_REALTIME_ALARM_func, "sleep");
    if(ret != 0)
        printf("pthread_create ret=%d\n", ret);
    
    ret = pthread_create(&pthread_clock_nanosleep_3, NULL, clock_nanosleep_CLOCK_MONOTONIC_func, "sleep");
    if(ret != 0)
        printf("pthread_create ret=%d\n", ret);
    
    ret = pthread_create(&pthread_clock_nanosleep_4, NULL, clock_nanosleep_CLOCK_BOOTTIME_func, "sleep");
    if(ret != 0)
        printf("pthread_create ret=%d\n", ret);
    
    ret = pthread_create(&pthread_clock_nanosleep_5, NULL, clock_nanosleep_CLOCK_BOOTTIME_ALARM_func, "sleep");
    if(ret != 0)
        printf("pthread_create ret=%d\n", ret);    
#endif
//*******************************************************************************************************************

//**********************************************Timer Test********************************************************
#ifdef TEST_TIMER
    struct itimerval itv;
    struct itimerspec ts;
    struct sigaction  sa;
    struct sigevent   sev;
    timer_t *tidlist;
    int sig_no = 0;

    tidlist = calloc(5, sizeof(timer_t));
    if (tidlist == NULL)
    {
        printf("Error malloc\n");
        return -1;
    }

    itv.it_value.tv_sec = 0;
    itv.it_value.tv_usec = 0;
    itv.it_interval.tv_sec = 0;
    itv.it_interval.tv_usec = 0;

    ts.it_value.tv_sec = 0;
    ts.it_value.tv_nsec = 0;
    ts.it_interval.tv_sec = 0;
    ts.it_interval.tv_nsec = 0;

    
    printf("\n[%s] Start timer\n", currTime("%T"));

//setitimer
    itv.it_value.tv_sec = 20;
    sa.sa_flags = 0;
    sa.sa_handler = alarm_handler;
    sigemptyset(&sa.sa_mask);
    if (sigaction(SIGALRM, &sa, NULL) == -1)
    {
        printf("Error sigaction line=%d\n", __LINE__);
        return -1;
    }

    alarm(10);

    if(setitimer(ITIMER_REAL, &itv, 0) == -1)------------------------------覆盖前面的alarm()
    {
        printf("Error setitimer line=%d\n", __LINE__);
        return -1;
    }

//POSIX Timer: CLOCK_REALTIME
    ts.it_value.tv_sec = 40;----------------------------------------------定时器时间
    sig_no = __SIGRTMIN+5;------------------------------------------------自定义信号
    sa.sa_sigaction = realtime_handler;-----------------------------------handler
    sa.sa_flags = SA_SIGINFO;
    sigemptyset(&sa.sa_mask);
    if (sigaction(sig_no, &sa, NULL) == -1)-------------------------------注册信号处理函数
    {
        printf("Error sigaction line=%d\n", __LINE__);
        return -1;
    }

    sev.sigev_notify = SIGEV_SIGNAL;
    sev.sigev_signo = sig_no;
    sev.sigev_value.sival_ptr = &tidlist[0];

    posix_timer_start(tidlist[0], CLOCK_REALTIME, &sev, &ts);------------创建timer

//POSIX Timer: CLOCK_MONOTONIC
    ts.it_value.tv_sec = 60;
    sig_no = __SIGRTMIN+6;
    sa.sa_sigaction = monotonic_handler;
    sa.sa_flags = SA_SIGINFO;
    sigemptyset(&sa.sa_mask);
    if (sigaction(sig_no, &sa, NULL) == -1)
    {
        printf("Error sigaction line=%d\n", __LINE__);
        return -1;
    }

    sev.sigev_notify = SIGEV_SIGNAL;
    sev.sigev_signo = sig_no;
    sev.sigev_value.sival_ptr = &tidlist[1];

    posix_timer_start(tidlist[1], CLOCK_MONOTONIC, &sev, &ts);

//POSIX Timer: CLOCK_BOOTTIME
    ts.it_value.tv_sec = 80;    
    sig_no = __SIGRTMIN+7;
    sa.sa_sigaction = boottime_handler;
    sa.sa_flags = SA_SIGINFO;
    sigemptyset(&sa.sa_mask);
    if (sigaction(sig_no, &sa, NULL) == -1)
    {
        printf("Error sigaction line=%d\n", __LINE__);
        return -1;
    }

    sev.sigev_notify = SIGEV_SIGNAL;
    sev.sigev_signo = sig_no;
    sev.sigev_value.sival_ptr = &tidlist[2];

    posix_timer_start(tidlist[2], CLOCK_BOOTTIME, &sev, &ts);

//POSIX Timer: CLOCK_REALTIME_ALARM
    ts.it_value.tv_sec = 100;    
    sig_no = __SIGRTMIN+8;
    sa.sa_sigaction = realtime_alarm_handler;
    sa.sa_flags = SA_SIGINFO;
    sigemptyset(&sa.sa_mask);
    if (sigaction(sig_no, &sa, NULL) == -1)
    {
        printf("Error sigaction line=%d\n", __LINE__);
        return -1;
    }

    sev.sigev_notify = SIGEV_SIGNAL;
    sev.sigev_signo = sig_no;
    sev.sigev_value.sival_ptr = &tidlist[3];

    posix_timer_start(tidlist[3], CLOCK_REALTIME_ALARM, &sev, &ts);

//POSIX Timer: CLOCK_BOOTTIME_ALARM
    ts.it_value.tv_sec = 120;    
    sig_no = __SIGRTMIN+9;
    sa.sa_sigaction = boottime_alarm_handler;
    sa.sa_flags = SA_SIGINFO;
    sigemptyset(&sa.sa_mask);
    if (sigaction(sig_no, &sa, NULL) == -1)
    {
        printf("Error sigaction line=%d\n", __LINE__);
        return -1;
    }

    sev.sigev_notify = SIGEV_SIGNAL;
    sev.sigev_signo = sig_no;
    sev.sigev_value.sival_ptr = &tidlist[4];

    posix_timer_start(tidlist[4], CLOCK_BOOTTIME_ALARM, &sev, &ts);
#endif
//*****************************************************************************************************************
//    sleep(250);
//    printf("[%s] Enter sleep\n", currTime("%T"));
//     system("echo mem > /sys/power/state");

    for (;;)                            /* Wait for incoming timer signals */
        pause();
}

联系方式:[email protected]

你可能感兴趣的:(Linux内核-时钟子系统,linux,时钟,时间体系)