- 基于多模态大模型的不完整多组学数据特征选择策略
m0_65156252
人工智能
基于多模态大模型的不完整多组学数据特征选择策略是当前生物信息学和精准医学领域的一个前沿问题。在多组学数据中,通常包括不同层次的生物信息(如基因组、转录组、蛋白质组、代谢组等),这些数据通常存在缺失、噪声或不一致的情况。因此,如何有效地在这些不完整的数据中进行特征选择,是实现精确疾病预测和个性化治疗的关键。结合多模态大模型(如自监督学习、图神经网络、Transformer等)可以有效解决这一问题。以
- 0312-PromptMRG:诊断驱动的医疗报告生成提示
m0_65156252
学习笔记
1,摘要:提出了诊断驱动的医疗报告生成提示(PromptMRG),这是一个新的框架,旨在通过诊断感知提示的指导提高MRG的诊断准确性。具体来说,PromptMRG是基于编码器-解码器架构,并带有一个额外的疾病分类分支。在生成报告时,来自分类分支的诊断结果将被转换为令牌提示,以显式地指导生成过程。为了进一步提高诊断准确性,我们设计了跨模态特征增强,通过利用预训练CLIP的知识,从数据库中检索相似的报
- 基于大模型预测的巨细胞病毒视网膜炎诊疗全流程研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与意义1.2研究目的1.3研究方法与创新点二、巨细胞病毒视网膜炎概述2.1疾病定义与特点2.2流行病学分析2.3现有治疗手段综述三、大模型技术原理与应用现状3.1大模型介绍3.2在医疗领域的应用案例3.3选择大模型预测巨细胞病毒视网膜炎的原因四、术前预测与评估4.1数据收集与整理4.2大模型预测模型的构建4.3预测内容与指标4.4案例分析:术前预测实例展示五、术中方案制定
- 告别手抖烦恼,重拾生活稳 “态”
2503_90680515
生活
手抖,看似微小的症状,却可能极大地扰乱生活节奏。轻微颤抖让日常小事变得艰难,拿不稳杯子、握不好笔,严重时甚至影响工作、社交,自信心也随之受挫。想要摆脱手抖困扰,先得了解背后原因。引发手抖的因素多样。生理性手抖在情绪激动、过度劳累、大量饮酒后常出现,一般幅度小、速度快,诱因消除后多能缓解。病理性手抖则复杂得多,常见于帕金森病、特发性震颤等疾病。帕金森病除手抖外,还有肢体僵硬、动作迟缓等症状;特发性震
- 10 大中文医学数据集汇总:涵盖神农中医药、中医药古籍、医学推理、医学问答……
医疗人工智能的快速发展离不开高质量数据集的支持。从疾病诊断到药物研发,再到个性化医疗,数据集在推动机器视觉、大模型等应用于医学领域中发挥着不可或缺的作用。医学数据集的形式多样,涵盖了不同维度和领域的数据资源。例如,在疾病诊断领域,像RJUA-QA这样的问答数据集推动了复杂医学知识的自动化应用;而在中医药领域,神农中医药数据集整合了传统中医药文献、临床案例和药方数据。针对于此,本文整理了医学领域的1
- 关联规则算法:揭秘数据中的隐藏关系,从理论到实战
秋声studio
机器学习算法详解关联规则算法数据挖掘Apriori算法FP-Growth算法大数据优化数据预处理增量式更新
引言在当今数据驱动的时代,如何从海量数据中挖掘出有价值的信息成为了各行各业的核心挑战。关联规则算法作为数据挖掘领域的重要工具,能够帮助我们发现数据中隐藏的关联关系,从而为决策提供支持。无论是电商平台的商品推荐,还是医疗领域的疾病诊断,关联规则算法都展现出了强大的应用潜力。本文将从基础概念出发,逐步深入探讨关联规则算法的核心原理、经典算法及其优化策略。无论你是数据挖掘的初学者,还是希望进一步了解关联
- 实施疫苗冷链温度监控预警 保障疫苗安全
BEOL贝尔科技
其他
国家免疫规划工作已经实施多年,接种疫苗是预防疾病最直接、最经济、最有效的手段。新冠疫苗第三针已经开始接种,但是近年来不断发生的疫苗事件,让广大市民对疫苗的质量安全产生了质疑。为了保障疫苗质量安全,小编推荐使用疫苗冷链温湿度监控预警系统。该系统能对储存疫苗的冰箱温度进行实时采集并上传到网络平台,相关人员可通过登陆平台查看设备内温度。一旦冷链设备运行出现异常情况,如发生温度超限或停电,系统会及时报警,
- 利用AI大模型,破解医疗数据困境_医疗ai大模型
喝不喝奶茶丫
人工智能语言模型大模型深度学习AI大模型AI机器学习
随着AI技术飞跃,医疗基础模型在2023年逐渐涌现。它们不仅能深刻理解临床数据,还能生成富有洞见的医疗知识。从影像诊断到药物研发,这些模型正逐步改写医疗服务的未来。然而,数据量有限、标注成本高、多模态数据融合困难等挑战仍旧存在。如何在确保隐私的前提下,高效利用有限的医疗数据?医疗数据困境新解:基础模型医疗诊断对减少疾病发生、降低死亡率、提高民众健康水平具有重要意义。高质量的医疗数据在其中扮演了不可
- 医院陪诊小程序开发主要解决哪些需求问题
zhushuai0831
个人开发
医院陪诊小程序开发,主要解决以下几个方面的需求问题:1、时间和空间上的便利。陪诊者可以通过小程序实时查询患者的就诊情况,并且可以了解医院的就诊流程和规定。这样可以减少陪诊者等待的时间,避免不必要的浪费。2、信息查询和分享。医院陪诊小程序可以为陪诊者提供疾病查询、药品查询、症状自诊等服务,可以让陪诊者更好地了解病情和治疗方案,并且可以分享这些信息给患者和家属。3、服务评价和反馈。小程序可以提供服务评
- 陪诊小程序开发:市场需求提升下的刚需
冠品网络科技
小程序小程序开发软件开发陪诊小程序微信小程序
近年来,随着人口老龄化的加剧、独居人口的数量不断提高,对陪诊服务的需求开始增强,陪诊行业逐渐走进了大众的日常生活中。而在互联网的发展下,也为陪诊服务提供了更加便捷、高效的平台---陪诊小程序。目前,我国已经进入到了老龄化社会,老年人口数量庞大,且许多老年人患有慢性疾病,需要频繁就医。陪诊小程序可以为他们提供便捷的陪诊服务,为患者提供挂号、取药、陪伴检查等一站式服务,提升就医体验,解决就医难题。陪诊
- 辛格迪客户案例 | 勤浩医药电子合约系统(eSign)项目
辛格迪
区块链
01勤浩医药,创新赋能勤浩医药(苏州)有限公司(以下简称“勤浩医药”)成立于2015年,位于江苏省苏州市工业园区。作为一家专注于创新药物研发的高新技术企业,勤浩医药致力于通过前沿的科研技术和创新平台,为全球患者提供高效、安全的治疗方案。公司秉持“创新驱动、质量为本、患者至上”的发展理念,在肿瘤、代谢性疾病和免疫疾病等领域不断深耕,已逐步发展成为国内领先的创新药研发企业。02行业挑战,传统之困随着医
- 深度学习模型未来可能会在这些领域取得突破性进展
xinxiyinhe
人工智能深度学习人工智能深度学习模型深度学习
深度学习模型作为人工智能的核心技术之一,未来有望在多个领域取得突破性进展。以下是一些可能的方向:1.通用人工智能(AGI)目标:开发具有通用智能的模型,能够像人类一样处理多种任务。潜在突破:更强的推理和抽象能力,解决复杂问题。结合多模态数据(文本、图像、声音等)实现更全面的理解。自我学习和适应能力,减少对大量标注数据的依赖。2.医疗与生命科学目标:提升疾病诊断、药物研发和个性化治疗的水平。潜在突破
- 华为面试题及答案——机器学习(二)
麦当当MDD
题目挖掘机器学习人工智能数据库开发数据库大数据
21.如何评价分类模型的优劣?(1)模型性能指标准确率(Accuracy):定义:正确分类的样本数与总样本数之比。适用:当各类样本的数量相对均衡时。精确率(Precision):定义:预测为正类的样本中实际为正类的比例。适用:当关注假阳性错误的成本较高时(例如垃圾邮件检测)。召回率(Recall):定义:实际为正类的样本中被正确预测为正类的比例。适用:当关注假阴性错误的成本较高时(例如疾病检测)。
- 医院信息科医疗语言大模型开发的风险洞察与避坑策略
Allen_LVyingbo
医疗高效编程研发健康医疗人工智能互联网医院python开源
一、引言1.1研究背景与意义在数字化医疗快速发展的当下,医疗AI技术已成为推动医疗行业变革的核心力量。其中,医疗语言大模型作为自然语言处理技术在医疗领域的深度应用,正逐渐改变着医疗服务的模式与效率。从辅助医生进行疾病诊断、提供临床决策支持,到助力医学文献分析、药物研发等,医疗语言大模型展现出了巨大的应用潜力。例如,在疾病诊断环节,大语言模型可以通过对患者症状、病史等文本信息的分析,快速给出可能的疾
- 八字易经算法之用JAVA实现完整排盘系统_八字易經演算法之用JAVA實現完整排盤系統 | 學步園...
花猹猹
去年一天,一個朋友去看望病人回來就驚奇的告訴我,他發現和他朋友一起住院(肝膽科)的病人無一例外都是屬相為虎的病人,不是大一輪就是小一輪的。這是為什麼呢?這不是什麼偶然,也不是什麼巧合。也許通過八字能告訴我們這些,也許通過預測能告訴他們應該早點檢查肝膽,這樣就能找點發現疾病。一直上網發現有人出軟妹幣求八字易經排盤系統方法或者源代碼,更有此類軟體竟要收費上百元。我上網查找半天也沒有具體八字易經排盤系統
- 25年第二本书【你的生存本能正在杀死你】
刺客-Andy
杂谈其他
与本能和解:一场现代心灵的进化之旅——读《你的生存本能正在杀死你》一、当原始代码撞上数字文明在非洲草原上,我们的祖先依靠敏锐的生存本能躲过剑齿虎的利齿;而今天,同样的神经警报却在午夜被手机屏幕的蓝光频繁触发。马克·舍恩的《你的生存本能正在杀死你》像一把锋利的手术刀,剖开了现代人最隐秘的生存悖论:那些曾让我们活下来的本能反应,正在以焦虑、失眠和慢性疾病的方式,缓慢地谋杀我们的生命质量。书中揭示的真相
- Herpotrichone A:神经保护的新星,解锁铁死亡之谜
试剂界的爱马仕
人工智能科技机器学习算法AI写作
近日,一项来自中国西北农林科技大学的研究团队揭示了HerpotrichoneA(He-A)这一天然产物在缓解铁死亡(ferroptosis)方面的潜力,为神经保护提供了新的视角。研究背景:神经退行性疾病与铁死亡的纠葛神经退行性疾病,如阿尔茨海默病(AD)和帕金森病(PD),以其进行性的神经元丧失为特征,严重影响了患者的生活质量。这些疾病的发病机制复杂多样,但氧化应激和铁死亡被认为是其中的关键因素。
- 智慧医疗伙伴:AI助手与医疗知识库的协同创新
LJ_Kindi
人工智能
在数字化转型的大潮中,医疗行业正以前所未有的速度探索提升医疗服务质量、优化医疗资源配置、加速医学研究的途径。AI助手与医疗知识库的协同创新,作为这一探索过程中的关键驱动力,正逐步成为未来医疗环境中不可或缺的智能伙伴。本文将深入探讨AI助手与医疗知识库在未来医疗环境中的协同创新趋势,特别是在临床决策支持、医学研究激发、疾病风险预警等方面的应用前景。一、临床决策支持:从海量数据到精准医疗在信息爆炸的时
- 【生态系统服务】构建生态安全格局--权衡与协同动态分析--多情景模拟预测--社会价值评估
程序员菠萝
安全
生态系统服务生态系统服务(ecosystemservices)是指人类从生态系统获得的所有惠益,包括供给服务(如提供食物和水)、调节服务(如控制洪水和疾病)、文化服务(如精神、娱乐和文化收益)以及支持服务(如维持地球生命生存环境的养分循环)生态安全是指生态系统的健康和完整情况。生态安全的内涵可以归纳为:一,保持生态系统活力和内外部组分、结构的稳定与持续性;二,维持生态系统生态功能的完整性;三,面临
- 机器学习与深度学习在辣椒病虫害识别中的集成分析(实验室环境)
@@南风
农作物病害识别与分类深度学习机器学习神经网络
Abstract背景:辣椒是世界上最重要的高价值蔬菜作物之一。然而,虫害和疾病感染是辣椒种植的主要限制因素。这些疾病无法根除,但可以加以处理和监测,以减轻损害。因此,采用基于图像的自动识别系统将有助于快速识别辣椒病害。从图像中提取的特征对于开发这样一个精确的识别系统至关重要。结果:本研究将传统方法提取的辣椒病虫害特征与基于深度学习方法提取的特征进行了比较。***共采集辣椒叶片图像974张,由5种病
- 医疗信息分析与知识图谱系统设计方案
翱翔-蓝天
知识图谱人工智能
医疗信息分析与知识图谱系统设计方案0.系统需求0.1项目背景本系统旨在通过整合医疗机构现有的信息系统数据,结合向量数据库、图数据库和开源AI模型,实现医疗数据的深度分析、疾病预测和医疗知识图谱构建,为医疗决策提供智能化支持。0.2核心需求数据集成与分析:对接现有医疗信息系统(HIS/LIS/PACS/EMR)医疗数据标准化处理多维度统计分析趋势预测分析知识图谱构建:医疗知识抽取实体关系构建知识推理
- 6.日常英语笔记
yan_baby_liu
外资英语笔记
It’sapitythatmyEnglishhasn’timprovedmuch,andI’mnotabletochatwithyoufreely.lung肺pulmonary医学中的肺部相关的pulmonarydisease肺部疾病pneumonia肺炎pulmonaryinflammation肺炎stickonthewall贴到墙上pasteonthewallfaintwhendrawingb
- 生物可穿戴产品需要采集和监测哪些
番茄老夫子
人工智能
健康状态监测生理指标:包括心率、呼吸频率、体温等基础生理参数。例如,通过心率传感器实时监测动物的心跳,正常成年犬的心率在60-120次/分钟,若超出这个范围,可能提示动物存在健康问题,如心脏病、感染等;呼吸频率也是重要指标,犬的正常呼吸频率为10-30次/分钟,呼吸频率异常加快或减慢,可能与呼吸系统疾病、疼痛等有关;体温监测同样关键,猫狗的正常体温一般在37.5℃-39℃之间,体温异常往往是疾病的
- 撰写文献必用的评价指标之DCA决策曲线
小辉同志
深度学习深度学习论文阅读
系列文章目录第一章撰写文献必用的评价指标之普通表格第二章撰写文献必用的评价指标之DCA决策曲线目录系列文章目录前言一、DCA决策曲线表现形式横轴纵轴曲线曲线解读图例二、单因素多因素分析单因素分析多因素分析三、R语言程序代码代码解释总结前言在智慧医疗中,深度学习模型用于疾病预测等任务,DCA决策曲线能将模型的预测结果与不同阈值下的临床决策相结合,直观展示在不同疾病概率阈值下,采取某种诊断或治疗策略所
- 仅用1年成为DeepMind顶梁柱,John Jumper博士毕业7年拿诺奖,开启蛋白折叠新时代
「我以为我只有10%的机会获得诺贝尔化学奖」,得知获奖消息后,JohnJumper在电话采访中笑着说道。他的语气中带着谦逊与感慨,而这份殊荣的背后,则是AlphaFold2带来的科学革命,彻底改变了蛋白质结构预测的方式。截至目前,已有来自190个国家的200多万人使用这一工具,它不仅加速了新药研发和疾病研究,也为基础科学探索提供了前所未有的支持,深刻影响了生命科学的未来发展。值得一提的是,Jump
- 桑黄消结节:甲状腺与乳腺结节的天然疗法
桑黄研究员
人工智能健康医疗
——科学解读千年药菌的抗炎与免疫调节密码一、结节危机:现代人的“隐形健康杀手”甲状腺结节与乳腺结节已成为现代人高发疾病。数据显示,我国甲状腺结节检出率超20%,乳腺增生性结节发病率高达70%。西医治疗以手术和药物为主,但存在创伤大、易复发等问题。而中医古籍中记载的桑黄,凭借抗炎、免疫调节与软坚散结三重作用,正成为结节管理的天然选择。二、桑黄消结节的科学机制1.抗炎成分:阻断结节生长的“导火索”慢性
- 护肝明星桑黄:从酒精肝到脂肪肝的全周期保护
桑黄研究员
健康医疗人工智能
——科学揭秘千年药菌的肝脏修复密码一、肝脏危机:现代人的“沉默杀手”全球肝病患者超13亿,中国占55%。酒精肝、脂肪肝、药物性肝损伤等疾病年轻化趋势显著,传统护肝药物多针对症状,难以实现全周期保护。桑黄作为《神农本草经》记载的“护肝圣品”,其科学价值正被现代研究逐步验证——三萜类化合物与桑黄多糖的双重作用,使其成为从预防到修复的全能护肝选择。二、桑黄的护肝机制:从纤维化抑制到细胞再生1.三萜类化合
- 薄膜压力分布测量系统鞋垫式足底压力分布测试
常州福普生电子科技有限公司
压力测试
引言:鞋垫式足底压力分布测试系统是一种基于传感器技术的高科技设备,通过嵌入鞋垫中的压力传感器,实时采集足底各部位的压力数据,并将数据传输到分析软件中进行处理和可视化。该系统能够精确测量足底压力的分布情况,帮助用户了解足部受力状态,从而为步态分析、疾病诊断、运动优化和鞋类设计提供科学依据。薄膜压力分布测量系统概述:薄膜压力分布测量系统主要由薄膜传感器、数据采集仪和软件组成。薄膜由压敏电阻组成,能够精
- AI服务器散热黑科技:让芯片“冷静”提速
小深ai硬件分享
人工智能深度学习服务器
AI服务器为何需要散热黑科技在人工智能飞速发展的当下,AI服务器作为核心支撑,作用重大。从互联网智能推荐,到医疗疾病诊断辅助,从金融风险预测,到教育个性化学习,AI服务器广泛应用,为各类复杂人工智能应用提供强大算力。然而,AI服务器在运行时面临着严峻的散热挑战。随着人工智能技术的不断发展,对AI服务器的计算能力要求越来越高,这使得服务器的功率密度急剧增加。以GPT-4的训练为例,它需要大量的GPU
- 深度学习在医疗影像分析中的革命性应用
Echo_Wish
人工智能前沿技术深度学习人工智能
深度学习在医疗影像分析中的革命性应用引言医疗影像分析是现代医学中不可或缺的一部分,特别是在疾病诊断和治疗过程中发挥了至关重要的作用。随着深度学习技术的发展,医疗影像分析的效率和准确性得到了显著提升。本文将探讨如何利用深度学习技术,特别是Python编程语言,来优化医疗影像分析,展示具体的代码实例,并举例说明其实际应用效果。深度学习与医疗影像分析深度学习(DeepLearning)是一种基于人工神经
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement