实践数据湖iceberg 第一课 入门
实践数据湖iceberg 第二课 iceberg基于hadoop的底层数据格式
实践数据湖iceberg 第三课 在sqlclient中,以sql方式从kafka读数据到iceberg
实践数据湖iceberg 第四课 在sqlclient中,以sql方式从kafka读数据到iceberg(升级版本到flink1.12.7)
实践数据湖iceberg 第五课 hive catalog特点
实践数据湖iceberg 第六课 从kafka写入到iceberg失败问题 解决
实践数据湖iceberg 第七课 实时写入到iceberg
实践数据湖iceberg 第八课 hive与iceberg集成
实践数据湖iceberg 第九课 合并小文件
实践数据湖iceberg 第十课 快照删除
实践数据湖iceberg 第十一课 测试分区表完整流程(造数、建表、合并、删快照)
实践数据湖iceberg 第十二课 catalog是什么
实践数据湖iceberg 第十三课 metadata比数据文件大很多倍的问题
实践数据湖iceberg 第十四课 元数据合并(解决元数据随时间增加而元数据膨胀的问题)
实践数据湖iceberg 第十五课 spark安装与集成iceberg(jersey包冲突)
实践数据湖iceberg 第十六课 通过spark3打开iceberg的认知之门
实践数据湖iceberg 第十七课 hadoop2.7,spark3 on yarn运行iceberg配置
实践数据湖iceberg 第十八课 多种客户端与iceberg交互启动命令(常用命令)
实践数据湖iceberg 第十九课 flink count iceberg,无结果问题
实践数据湖iceberg 第二十课 flink + iceberg CDC场景(版本问题,测试失败)
实践数据湖iceberg 第二十一课 flink1.13.5 + iceberg0.131 CDC(测试成功)
安装spark3.2.0-bin-hadoop3.2.tgz 对应iceberg0.13.0 是目前社区最稳定的版本。(试过spark3.2.1不行)
测试spark操作iceberg增删改查以及时间旅游功能
准备启动 spark-sql
命令说明: --packages org.apache.iceberg:iceberg-spark-runtime-3.2_2.12:0.13.0 会自动下载iceberg的包(只在第一次下载)
–conf 声明catalog
bin/spark-sql --packages org.apache.iceberg:iceberg-spark-runtime-3.2_2.12:0.13.0 --conf spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions --conf spark.sql.catalog.spark_catalog=org.apache.iceberg.spark.SparkSessionCatalog --conf spark.sql.catalog.spark_catalog.type=hive --conf spark.sql.catalog.local=org.apache.iceberg.spark.SparkCatalog --conf spark.sql.catalog.local.type=hadoop --conf spark.sql.catalog.local.warehouse=/tmp/iceberg/warehouse
执行效果:
[root@hadoop103 spark-3.2.1-bin-hadoop3.2]# bin/spark-sql --packages org.apache.iceberg:iceberg-spark-runtime-3.2_2.12:0.13.0 --conf spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions --conf spark.sql.catalog.spark_catalog=org.apache.iceberg.spark.SparkSessionCatalog --conf spark.sql.catalog.spark_catalog.type=hive --conf spark.sql.catalog.local=org.apache.iceberg.spark.SparkCatalog --conf spark.sql.catalog.local.type=hadoop --conf spark.sql.catalog.local.warehouse=/tmp/iceberg/warehouse
:: loading settings :: url = jar:file:/opt/software/spark-3.2.1-bin-hadoop3.2/jars/ivy-2.5.0.jar!/org/apache/ivy/core/settings/ivysettings.xml
Ivy Default Cache set to: /root/.ivy2/cache
The jars for the packages stored in: /root/.ivy2/jars
org.apache.iceberg#iceberg-spark-runtime-3.2_2.12 added as a dependency
:: resolving dependencies :: org.apache.spark#spark-submit-parent-70be9d21-1481-4c47-95f9-4ac13aaf8782;1.0
confs: [default]
found org.apache.iceberg#iceberg-spark-runtime-3.2_2.12;0.13.0 in central
:: resolution report :: resolve 100ms :: artifacts dl 3ms
:: modules in use:
org.apache.iceberg#iceberg-spark-runtime-3.2_2.12;0.13.0 from central in [default]
---------------------------------------------------------------------
| | modules || artifacts |
| conf | number| search|dwnlded|evicted|| number|dwnlded|
---------------------------------------------------------------------
| default | 1 | 0 | 0 | 0 || 1 | 0 |
---------------------------------------------------------------------
:: retrieving :: org.apache.spark#spark-submit-parent-70be9d21-1481-4c47-95f9-4ac13aaf8782
confs: [default]
0 artifacts copied, 1 already retrieved (0kB/4ms)
22/02/14 11:43:10 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
22/02/14 11:43:13 WARN conf.HiveConf: HiveConf of name hive.stats.jdbc.timeout does not exist
22/02/14 11:43:13 WARN conf.HiveConf: HiveConf of name hive.stats.retries.wait does not exist
22/02/14 11:43:15 WARN metastore.ObjectStore: Version information not found in metastore. hive.metastore.schema.verification is not enabled so recording the schema version 2.3.0
22/02/14 11:43:15 WARN metastore.ObjectStore: setMetaStoreSchemaVersion called but recording version is disabled: version = 2.3.0, comment = Set by MetaStore root@10.233.65.40
Spark master: local[*], Application Id: local-1644810191872
spark-sql>
CREATE TABLE local.db.table (id bigint, data string) USING iceberg;
INSERT INTO local.db.table VALUES (1, 'a'), (2, 'b'), (3, 'c');
SELECT count(1) as count, data FROM local.db.table GROUP BY data;
select * from local.db.table;
INSERT INTO local.db.table VALUES (4, 'd'), (5, 'e'), (6, 'f');
select * from local.db.table;
update local.db.table set data='apple' where id=1;
delete from local.db.table;
select * from local.db.table;
INSERT INTO local.db.table VALUES (7, 'g'), (8, 'h');
select * from local.db.table;
spark-sql> CREATE TABLE local.db.table (id bigint, data string) USING iceberg;
Time taken: 0.072 seconds
spark-sql> INSERT INTO local.db.table VALUES (1, 'a'), (2, 'b'), (3, 'c');
Time taken: 0.233 seconds
spark-sql> SELECT count(1) as count, data FROM local.db.table GROUP BY data;
1 a
1 b
1 c
Time taken: 0.161 seconds, Fetched 3 row(s)
spark-sql> select * from local.db.table;
1 a
2 b
3 c
Time taken: 0.095 seconds, Fetched 3 row(s)
spark-sql> INSERT INTO local.db.table VALUES (4, 'd'), (5, 'e'), (6, 'f');
Time taken: 0.19 seconds
spark-sql> select * from local.db.table;
1 a
2 b
3 c
4 d
5 e
6 f
Time taken: 0.115 seconds, Fetched 6 row(s)
spark-sql> update local.db.table set data='apple' where id=1;
Time taken: 1.883 seconds
spark-sql> delete from local.db.table;
Time taken: 0.198 seconds
spark-sql> select * from local.db.table;
Time taken: 0.047 seconds
spark-sql> INSERT INTO local.db.table VALUES (7, 'g'), (8, 'h');
Time taken: 0.181 seconds
spark-sql> select * from local.db.table;
7 g
8 h
Time taken: 0.079 seconds, Fetched 2 row(s)
[root@hadoop103 iceberg]# hadoop fs -ls /tmp/iceberg/warehouse/db/table/data
Found 9 items
-rw-r--r-- 2 root supergroup 643 2022-02-14 14:00 /tmp/iceberg/warehouse/db/table/data/00000-12-725752c2-020c-41a8-a636-4096e98c139b-00001.parquet
-rw-r--r-- 2 root supergroup 642 2022-02-14 14:01 /tmp/iceberg/warehouse/db/table/data/00000-17-7fd36618-5679-4768-8a98-e99b88192b64-00001.parquet
-rw-r--r-- 2 root supergroup 643 2022-02-14 14:02 /tmp/iceberg/warehouse/db/table/data/00000-223-e882ea95-6224-42b2-b449-d57f5ef061f4-00001.parquet
-rw-r--r-- 2 root supergroup 643 2022-02-14 14:00 /tmp/iceberg/warehouse/db/table/data/00001-13-b1a90028-e5ae-4564-be89-97fe5ba26e52-00001.parquet
-rw-r--r-- 2 root supergroup 643 2022-02-14 14:01 /tmp/iceberg/warehouse/db/table/data/00001-18-67012ef6-ff46-44a5-88ab-71e4d43ecdad-00001.parquet
-rw-r--r-- 2 root supergroup 643 2022-02-14 14:02 /tmp/iceberg/warehouse/db/table/data/00001-224-7b43bf9d-4437-4d62-beb6-f4f665f0b380-00001.parquet
-rw-r--r-- 2 root supergroup 643 2022-02-14 14:00 /tmp/iceberg/warehouse/db/table/data/00002-14-85ca6677-70c5-4b7b-a800-22d95e5489eb-00001.parquet
-rw-r--r-- 2 root supergroup 643 2022-02-14 14:01 /tmp/iceberg/warehouse/db/table/data/00002-19-14269447-20ed-4983-b66c-02983409ed5f-00001.parquet
-rw-r--r-- 2 root supergroup 686 2022-02-14 14:01 /tmp/iceberg/warehouse/db/table/data/00175-23-2d571fde-d1d0-4a30-b52f-b6c69ac9ecf3-00001.parquet
[root@hadoop103 iceberg]# hadoop fs -ls /tmp/iceberg/warehouse/db/table/metadata
Found 20 items
-rw-r--r-- 2 root supergroup 5824 2022-02-14 14:02 /tmp/iceberg/warehouse/db/table/metadata/2e735a5c-bd99-46f7-af49-0e26bc51ec2f-m0.avro
-rw-r--r-- 2 root supergroup 5778 2022-02-14 14:02 /tmp/iceberg/warehouse/db/table/metadata/2e735a5c-bd99-46f7-af49-0e26bc51ec2f-m1.avro
-rw-r--r-- 2 root supergroup 5866 2022-02-14 14:02 /tmp/iceberg/warehouse/db/table/metadata/2e735a5c-bd99-46f7-af49-0e26bc51ec2f-m2.avro
-rw-r--r-- 2 root supergroup 5825 2022-02-14 14:02 /tmp/iceberg/warehouse/db/table/metadata/771a8e19-a87e-489f-88d1-9480553237e9-m0.avro
-rw-r--r-- 2 root supergroup 5867 2022-02-14 14:01 /tmp/iceberg/warehouse/db/table/metadata/954eb317-6a86-413b-94a2-d59e25e294c6-m0.avro
-rw-r--r-- 2 root supergroup 5860 2022-02-14 14:00 /tmp/iceberg/warehouse/db/table/metadata/daeb600d-166d-4ab5-8e8c-899382c24038-m0.avro
-rw-r--r-- 2 root supergroup 5877 2022-02-14 14:01 /tmp/iceberg/warehouse/db/table/metadata/fae8df3a-78fa-43a6-838f-6783e58f04ec-m0.avro
-rw-r--r-- 2 root supergroup 5779 2022-02-14 14:01 /tmp/iceberg/warehouse/db/table/metadata/fae8df3a-78fa-43a6-838f-6783e58f04ec-m1.avro
-rw-r--r-- 2 root supergroup 3797 2022-02-14 14:02 /tmp/iceberg/warehouse/db/table/metadata/snap-1588410421234526207-1-2e735a5c-bd99-46f7-af49-0e26bc51ec2f.avro
-rw-r--r-- 2 root supergroup 3826 2022-02-14 14:01 /tmp/iceberg/warehouse/db/table/metadata/snap-3074595041692363385-1-954eb317-6a86-413b-94a2-d59e25e294c6.avro
-rw-r--r-- 2 root supergroup 3768 2022-02-14 14:02 /tmp/iceberg/warehouse/db/table/metadata/snap-4321345386411511567-1-771a8e19-a87e-489f-88d1-9480553237e9.avro
-rw-r--r-- 2 root supergroup 3848 2022-02-14 14:01 /tmp/iceberg/warehouse/db/table/metadata/snap-5972104378811544858-1-fae8df3a-78fa-43a6-838f-6783e58f04ec.avro
-rw-r--r-- 2 root supergroup 3754 2022-02-14 14:00 /tmp/iceberg/warehouse/db/table/metadata/snap-7801623062552576504-1-daeb600d-166d-4ab5-8e8c-899382c24038.avro
-rw-r--r-- 2 root supergroup 1168 2022-02-14 14:00 /tmp/iceberg/warehouse/db/table/metadata/v1.metadata.json
-rw-r--r-- 2 root supergroup 2070 2022-02-14 14:00 /tmp/iceberg/warehouse/db/table/metadata/v2.metadata.json
-rw-r--r-- 2 root supergroup 3006 2022-02-14 14:01 /tmp/iceberg/warehouse/db/table/metadata/v3.metadata.json
-rw-r--r-- 2 root supergroup 4045 2022-02-14 14:01 /tmp/iceberg/warehouse/db/table/metadata/v4.metadata.json
-rw-r--r-- 2 root supergroup 4984 2022-02-14 14:02 /tmp/iceberg/warehouse/db/table/metadata/v5.metadata.json
-rw-r--r-- 2 root supergroup 5920 2022-02-14 14:02 /tmp/iceberg/warehouse/db/table/metadata/v6.metadata.json
-rw-r--r-- 2 root supergroup 1 2022-02-14 14:02 /tmp/iceberg/warehouse/db/table/metadata/version-hint.text
查这个表所有的快照:
SELECT * FROM local.db.table.snapshots;
快照字段的意思:
desc local.db.table.snapshots;
spark-sql> SELECT * FROM local.db.table.snapshots;
2022-02-14 14:00:34.539 7801623062552576504 NULL append /tmp/iceberg/warehouse/db/table/metadata/snap-7801623062552576504-1-daeb600d-166d-4ab5-8e8c-899382c24038.avro {"added-data-files":"3","added-files-size":"1929","added-records":"3","changed-partition-count":"1","spark.app.id":"local-1644810838618","total-data-files":"3","total-delete-files":"0","total-equality-deletes":"0","total-files-size":"1929","total-position-deletes":"0","total-records":"3"}
2022-02-14 14:01:12.485 3074595041692363385 7801623062552576504 append /tmp/iceberg/warehouse/db/table/metadata/snap-3074595041692363385-1-954eb317-6a86-413b-94a2-d59e25e294c6.avro {"added-data-files":"3","added-files-size":"1928","added-records":"3","changed-partition-count":"1","spark.app.id":"local-1644810838618","total-data-files":"6","total-delete-files":"0","total-equality-deletes":"0","total-files-size":"3857","total-position-deletes":"0","total-records":"6"}
2022-02-14 14:01:31.531 5972104378811544858 3074595041692363385 overwrite /tmp/iceberg/warehouse/db/table/metadata/snap-5972104378811544858-1-fae8df3a-78fa-43a6-838f-6783e58f04ec.avro {"added-data-files":"1","added-files-size":"686","added-records":"1","changed-partition-count":"1","deleted-data-files":"1","deleted-records":"1","removed-files-size":"643","spark.app.id":"local-1644810838618","total-data-files":"6","total-delete-files":"0","total-equality-deletes":"0","total-files-size":"3900","total-position-deletes":"0","total-records":"6"}
2022-02-14 14:02:04.778 1588410421234526207 5972104378811544858 delete /tmp/iceberg/warehouse/db/table/metadata/snap-1588410421234526207-1-2e735a5c-bd99-46f7-af49-0e26bc51ec2f.avro {"changed-partition-count":"1","deleted-data-files":"6","deleted-records":"6","removed-files-size":"3900","spark.app.id":"local-1644810838618","total-data-files":"0","total-delete-files":"0","total-equality-deletes":"0","total-files-size":"0","total-position-deletes":"0","total-records":"0"}
2022-02-14 14:02:47.404 4321345386411511567 1588410421234526207 append /tmp/iceberg/warehouse/db/table/metadata/snap-4321345386411511567-1-771a8e19-a87e-489f-88d1-9480553237e9.avro {"added-data-files":"2","added-files-size":"1286","added-records":"2","changed-partition-count":"1","spark.app.id":"local-1644810838618","total-data-files":"2","total-delete-files":"0","total-equality-deletes":"0","total-files-size":"1286","total-position-deletes":"0","total-records":"2"}
Time taken: 0.126 seconds, Fetched 5 row(s)
spark-sql> desc local.db.table.snapshots;
committed_at timestamp
snapshot_id bigint
parent_id bigint
operation string
manifest_list string
summary map
当前表有哪些文件:
spark-sql> select * from local.db.table.files;
0 /tmp/iceberg/warehouse/db/table/data/00000-223-e882ea95-6224-42b2-b449-d57f5ef061f4-00001.parquet PARQUET 0 1 643 {1:46,2:48} {1:1,2:1} {1:0,2:0} {} {1:,2:g} {1:,2:g} NULL [4] NULL 0
0 /tmp/iceberg/warehouse/db/table/data/00001-224-7b43bf9d-4437-4d62-beb6-f4f665f0b380-00001.parquet PARQUET 0 1 643 {1:46,2:48} {1:1,2:1} {1:0,2:0} {} {1,2:h} {1,2:h} NULL [4] NULL 0
Time taken: 0.137 seconds, Fetched 2 row(s)
spark-sql> select * from local.db.table.history;
2022-02-14 14:00:34.539 7801623062552576504 NULL true
2022-02-14 14:01:12.485 3074595041692363385 7801623062552576504 true
2022-02-14 14:01:31.531 5972104378811544858 3074595041692363385 true
2022-02-14 14:02:04.778 1588410421234526207 5972104378811544858 true
2022-02-14 14:02:47.404 4321345386411511567 1588410421234526207 true
Time taken: 0.08 seconds, Fetched 5 row(s)
启动spark-shell,版本更改为 spark-3.2.0-bin-hadoop3.2,
spark-3.2.1-bin-hadoop3.2会报错
scala> spark.read.option("as-of-timestamp","7801623062552576504").format("iceberg").load("/tmp/iceberg/warehouse/db/table")
res0: org.apache.spark.sql.DataFrame = [id: bigint, data: string]
scala> res0.show
java.lang.IncompatibleClassChangeError: class org.apache.spark.sql.catalyst.plans.logical.DynamicFileFilterWithCardinalityCheck has interface org.apache.spark.sql.catalyst.plans.logical.BinaryNode as super class
at java.lang.ClassLoader.defineClass1(Native Method)
at java.lang.ClassLoader.defineClass(ClassLoader.java:763)
at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:142)
at java.net.URLClassLoader.defineClass(URLClassLoader.java:468)
at java.net.URLClassLoader.access$100(URLClassLoader.java:74)
at java.net.URLClassLoader$1.run(URLClassLoader.java:369)
at java.net.URLClassLoader$1.run(URLClassLoader.java:363)
启动spark-shell:
[root@hadoop103 spark-3.2.0-bin-hadoop3.2]# bin/spark-shell --packages org.apache.iceberg:iceberg-spark-runtime-3.2_2.12:0.13.0 --conf spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions --conf spark.sql.catalog.spark_catalog=org.apache.iceberg.spark.SparkSessionCatalog --conf spark.sql.catalog.spark_catalog.type=hive --conf spark.sql.catalog.local=org.apache.iceberg.spark.SparkCatalog --conf spark.sql.catalog.local.type=hadoop --conf spark.sql.catalog.local.warehouse=/tmp/iceberg/warehouse
快照根据快照id读取,对应快照内容:
scala> spark.read.option("snapshot-id","7801623062552576504").format("iceberg").load("/tmp/iceberg/warehouse/db/table")
res4: org.apache.spark.sql.DataFrame = [id: bigint, data: string]
scala> spark.read.option("snapshot-id","7801623062552576504").format("iceberg").load("/tmp/iceberg/warehouse/db/table").show
+---+----+
| id|data|
+---+----+
| 1| a|
| 2| b|
| 3| c|
+---+----+
scala> spark.read.option("snapshot-id","3074595041692363385").format("iceberg").load("/tmp/iceberg/warehouse/db/table").show
+---+----+
| id|data|
+---+----+
| 1| a|
| 2| b|
| 3| c|
| 4| d|
| 5| e|
| 6| f|
+---+----+
scala> spark.read.option("snapshot-id","5972104378811544858").format("iceberg").load("/tmp/iceberg/warehouse/db/table").show
+---+-----+
| id| data|
+---+-----+
| 1|apple|
| 2| b|
| 3| c|
| 4| d|
| 5| e|
| 6| f|
+---+-----+
scala> spark.read.option("snapshot-id","1588410421234526207").format("iceberg").load("/tmp/iceberg/warehouse/db/table").show
+---+----+
| id|data|
+---+----+
+---+----+
scala> spark.read.option("snapshot-id","4321345386411511567").format("iceberg").load("/tmp/iceberg/warehouse/db/table").show
+---+----+
| id|data|
+---+----+
| 7| g|
| 8| h|
+---+----+
不提供快照id,默认读最新快照
scala> spark.read.format("iceberg").load("/tmp/iceberg/warehouse/db/table").show
+---+----+
| id|data|
+---+----+
| 7| g|
| 8| h|
+---+----+
在option中指定start-snapshot-id,end-snapshot-id
scala> spark.read.format("iceberg").option("start-snapshot-id","7801623062552576504").option("end-snapshot-id","3074595041692363385").load("/tmp/iceberg/warehouse/db/table").show
+---+----+
| id|data|
+---+----+
| 4| d|
| 5| e|
| 6| f|
+---+----+
对iceberg增删改查、快照有了初步认识