GIS基本概念集锦

1、地理信息系统(Geographic Information System ,即GIS )——一门集计算机科学、信息学、地理学等多门科学为一体的新兴学科,它是在计算机软件和硬件支持下,运用系统工程和信息科学的理论,科学管理和综合分析具有空间内涵的地理数据,以提供对规划、管理、决策和研究所需信息的空间信息系统。GIS有以下子系统:数据输入子系统,数据存储和检索子系统,数据操作和分析子系统,报告子系统.
信息系统
非空间的 空间的
管理信息系统 非地理学的 GIS
CAD/CAM 其他GIS LIS
  社会经济,人口普查 基于非地块,基于地块的




2、比较GIS与CAD、CAC间的异同。
CAD——计算机辅助设计,规则图形的生成、编辑与显示系统,与外部描述数据无关。
CAC——计算机辅助制图,适合地图制图的专用软件,缺乏空间分析能力。
GIS——地理信息系统,集规则图形与地图制图于一身,且有较强的空间分析能力。
3、图层:将空间信息按其几何特征及属性划分成的专题。
4、地理数据采集——实地调查、采样;传统的测量方法,如三角测量法、三边测量法;全球定位系统(GPS);现代遥感技术;生物遥测学;数字摄影技术;人口普查。
5、信息范例——传统的制图方法,称为信息范例,即假定地图本身是一个最终产品,通过使用符号、分类限制的选择等方式交换空间信息的模式。这个范例是传统的透视图方法,由于原始而受到很多限制,地图用户不能轻易获得预分类数据。也就是说,用户只限于处理最终产品,而无法将数据重组为更有效的形式以适应环境或需求的变化。
6、分析范例(整体范例)——存储保存原始数据的属性数据,可根据用户的需求进行数据的显示、重组和分类。整体范例是一种真正的用于制图学和地理学的整体方法。
7、栅格——栅格结构是最简单最直接的空间数据结构,是指将地球表面划分为大小均匀紧密相邻的网格阵列,每个网格作为一个象元或象素由行、列定义,并包含一个代码表示该象素的属性类型或量值,或仅仅包括指向其属性记录的指针。因此,栅格结构是以规则的阵列来表示空间地物或现象分布的数据组织,组织中的每个数据表示地物或现象的非几何属性特征。特点:属性明显,定位隐含,即数据直接记录属性本身,而所在的位置则根据行列号转换为相应的坐标,即定位是根据数据在数据集中的位置得到的,在栅格结构中,点用一个栅格单元表示;线状地物用沿线走向的一组相邻栅格单元表示,每个栅格单元最多只有两个相邻单元在线上;面或区域用记有区域属性的相邻栅格单元的集合表示,每个栅格单元可有多于两个的相邻单元同属一个区域。
8、矢量——它假定地理空间是连续,通过记录坐标的方式尽可能精确地表示点、线、多边形等地理实体,坐标空间设为连续,允许任意位置、长度和面积的精确定义。对于点实体,矢量结构中只记录其在特定坐标系下的坐标和属性代码;对于线实体,用一系列坐标对的连线表示;多边形是指边界完全闭合的空间区域,用一系列坐标对的连线表示。




9、“拓扑”(Topology)一词来源于希腊文,它的原意是“形状的研究”。拓扑学是几何学的一个分支,它研究在拓扑变换下能够保持不变的几何属性——拓扑属性(拓扑属性:一个点在一个弧段的端点,一个点在一个区域的边界上;非拓扑属性:两点之间的距离,弧段的长度,区域的周长、面积)。这种结构应包括:唯一标识,多边形标识,外包多边形指针,邻接多边形指针,边界链接,范围(最大和最小x、y坐标值)。地理空间研究中三个重要的拓扑概念(1)连接性:弧段在结点处的相互联接关系;(2)多边形区域定义:多个弧段首尾相连构成了多边形的内部区域;(3)邻接性:通过定义弧段的左右边及其方向性来判断弧段左右多边形的邻接性。
10、矢量的实体错误——伪节点:即需要假节点进行识别的节点,发生在线和自身相连接的地方(如岛状伪结点——显示存在一个岛状多边形,这个多边形处于另一个更大的多边形内部),或发生在两条线沿着平行路径而不是交叉路径相交的地方(节点——表示线与线间连接的特殊点)。摇摆结点:有时称为摇摆,来源于3种可能的错误类型:闭合失败的多边形;欠头线,即结点延伸程度不够,未与应当连接的目标相连;过头线,结点的线超出想与之连接的实体。碎多边形:起因于沿共同边界线进行的不良数字化过程,在边界线位置,线一定是不只一次地被数字化。高度不规则的国家边境线,例如中美洲,特别容易出现这样的数字变形。标注错误:丢失标注和重复标注。异常多边形:具有丢失节点的多边形。丢失的弧。
11、空间分析方法——1、空间信息的测量:线与多边形的测量、距离测量、形状测量;2、空间信息分类:范围分级分类、邻域功能、漫游窗口、缓冲区;3、叠加分析:多边形叠加、点与多边形、线与多边形;4、网络分析:路径分析、地址匹配、资源匹配; 5、空间统计分析:插值、趋势分析、结构分析;6、表面分析:坡度分析、坡向分析、可见度和相互可见度分析。
12、欧拉数——最通常的空间完整性,即空洞区域内空洞数量的度量,测量法称为欧拉函数,它只用一个单一的数描述这些函数,称为欧拉数。数量上,欧拉数=(空洞数)-(碎片数-1),这里空洞数是外部多边形自身包含的多边形空洞数量,碎片数是碎片区域内多边形的数量。有时欧拉数是不确定的。
13、函数距离——描述两点间距离的一种函数关系,如时间、摩擦、消耗等,将这些用于距离测量的方法集中起来,称为函数距离。
14、曼哈顿距离——两点在南北方向上的距离加上在东西方向上的距离,即D(I,J)=|XI-XJ|+|YI-YJ|。对于一个具有正南正北、正东正西方向规则布局的城镇街道,从一点到达另一点的距离正是在南北方向上旅行的距离加上在东西方向上旅行的距离因此曼哈顿距离又称为出租车距离,曼哈顿距离不是距离不变量,当坐标轴变动时,点间的距离就会不同。
15、邻域功能——所谓邻域是指具有统一属性的实体区域或者焦点集中在整个地区的较小部分实体空间。邻域功能就是在特定的实体空间中发现其属性的一致性。它包括直接邻域和扩展邻域。
16、缓冲区分析——是指根据数据库的点、线、面实体基础,自动建立其周围一定宽度范围内的缓冲区多边形实体,从而实现空间数据在水平方向得以扩展的空间分析方法。缓冲区在某种程度上受控于目前存在的摩擦表面、地形、障碍物等,也就是说,尽管缓冲区建立在位置的基础上,但是还有其他实质性的成分。确定缓冲区距离的四种基本方法:随机缓冲区、成因缓冲区、可测量缓冲区、合法授权缓冲区。
17、统计表面——表面是含有Z值的形貌,Z值又称为高度值,它的位置被一系列X和Y坐标对定义且在区域范围内分布。Z值也常被认为是高程值,但是不必局限于这一种度量。实际上,在可定义的区域内出现的任意可测量的数值(例如,序数、间隔和比率数据)都可以认为组成了表面。一般使用的术语是统计表面,因为在考虑的范围内Z值构成了许多要素的统计学的表述(Robinson et al., 1995)。
18、DEM——数字高程模型(Digital Elevation Model)。地形模型不仅包含高程属性,还包含其它的地表形态属性,如坡度、坡向等。DEM通常用地表规则网格单元构成的高程矩阵表示,广义的DEM还包括等高线、三角网等所有表达地面高程的数字表示。在地理信息系统中,DEM是建立数字地形模型(Digital Terrain Model)的基础数据,其它的地形要素可由DEM直接或间接导出,称为“派生数据”,如坡度、坡向。
19、空间插值——空间插值常用于将离散点的测量数据转换为连续的数据曲面,以便与其它空间现象的分布模式进行比较,它包括了空间内插和外推两种算法。空间内插算法:通过已知点的数据推求同一区域未知点数据。空间外推算法:通过已知区域的数据,推求其它区域数据。20、泰森多边形——通过数学方法定义、平分点间的空间并以直线相连结,在点状物体间生成多边形的方法。
21、线密度——用所有区域内的线的总长度除以区域的面积。
22、连通性——连通性是衡量网络复杂性的量度,常用γ指数和α指数计算它。其中,γ指数等于给定空间网络体节点连线数与可能存在的所有连线数之比;α指数用于衡量环路,节点被交替路径连接的程度称为α指数,等于当前存在的环路数与可能存在的最大环路数之比。
23、图形叠加——将一个被选主题的图形所表示的专题信息放在另一个被选主题的图形所表示的专题信息之上。
24、栅格自动叠加——基于网格单元的多边形叠加是一个简单的过程,因为区域是由网格单元组成的不规则的块,它共享相同的一套数值和相关的标注。毫无疑问,网格单元为基础的多边形叠加缺乏空间准确性,因为网格单元很大,但是类似于简单的点与多边形和线与多边形叠加的相同部分,由于它的简单性,因此可以获得较高的灵活程度和处理速度。
25、拓扑矢量叠加——如何决定实体间功能上的关系,如定义由特殊线相连的左右多边形,定义线段间的关系去检查交通流量,或依据个别实体或相关属性搜索已选择实体。它也为叠加多个多边形图层建立了一种方法,从而确保连结着每个实体的属性能够被考虑,并且因此使多个属性相结合的合成多边形能够被支持。这种拓扑结果称作最小公共地理单元(LCGU)。
26、矢量多边形叠加——点与多边形和线与多边形叠加使用的主要问题是,线并不总是出现在整个区域内。解决该问题的最强有力的办法是让软件测定每组线的交叉点,这就是所谓的结点。进行矢量多边形的叠加,其任务是基本相同的,除了必须计算重叠交叉点外,还要定义与之相联系的多边形线的属性。
27、布尔叠加——一种以布尔代数为基础的叠加操作。
28、制图建模——用以指明应用命令组合来回答有关空间现象问题的处理。制图模型是针对原始数据也包括导出数据和中间地图数据进行一系列交互有序的地图操作来模拟空间决策的处理。
29、地理模型的类型——类似统计同类的描述性模型和与推理统计技术相关的规则性模型。
30、常见模型——1、注重样式与处理的问题长时间以来用于解释类似农业活动与运输成本间的关系——独立状态模型。2、最初为预测工业位置点的空间分布的样式而设计的WEBER模型,进行改进后可使参与者寻找最佳商业和服务位置——位置-分配模型。3、建立在吸引力与到潜在市场的距离呈反比这一基础上的经济地理模型——重力模型。4、通过空间验证思想如今广泛用于生态群落,通过地理空间跟踪动植物运动——改进扩散模型。
31、专题地图——以表现某单一属性的位置或若干选定属性之间关系为主要目的的地图。专题图形设计的一般程序包括合适的符号和图形对象的选择、生成和放置,以明确突出研究主题的重要属性和空间关系,同时还要考虑参考系统。GIS专题地图输出的规则:不但要有精美的图形,最重要的是去读图、分析地图和理解地图。
32、元数据——关于数据的数据,对数据库内容的全面描述,其目的是促进数据集的高效利用和充分共享。使用元数据的理由:性能上,完整性、可扩展性、特殊性、安全性;功能上,差错功能、浏览功能、程序生成。
33、聚合——将单个数据元素进行分类的大量数字处理过程。
34、克立金法——依靠地球自然表面随距离的变化概率而确定高程的一种精确内插方法。
35、四叉树——一种压缩数据结构,它把地理空间定量划分为可变大小的网格,每个网格具有相同性质的属性。
36、比较工具型地理信息系统和应用型地理信息系统的异同。
工具型地理信息系统:是一种通用型GIS,具有一般的功能和特点,向用户提供一个统一的操作平台。一般没有地理空间实体,而是由用户自己定义。具有很好的二次开发功能。如:ArcInfo、Genamap、MapInfo、MapGIS、GeoStar。
应用型地理信息系统:在较成熟的工具型GIS软件基础上,根据用户的需求和应用目的而设计的用于解决一类或多类实际问题的地理信息系统,它具有地理空间实体和解决特殊地理空间分布的模型。如LIS、CGIS、UGIS。
37、详细描述应用型地理信息系统的开发过程
1、 系统总体设计:需求和可行性分析、数据模型设计、数据库设计、方法设计
2、 系统软件设计:开发语言、用户界面、流程、交互
3、 程序代码编写:投影、数据库、输入、编辑
4、 系统的调试与运行:α调试、β调试
5、 系统的评价与维护:功能评价、费用评价、效益评价
38、空间信息系统:以多媒体技术为依托,以空间数据为基础,以虚拟现实为手段的集空间数据的输入、编辑、存储、分析和显示于一体的巨系统,体由若干个子系统组成。
39、地理数据测量标准——命名(对数据命名,允许我们对把对象叫什么做出声明,但不允许对两个命名的对象进行直接比较)、序数(提供对空间对象进行逻辑对比的结果,但这种对比仅限于所谈论问题的范围内)、间隔(可以对待测项逐个赋值,能够更为精确地估计对比物的不同点)、比率(用途最广的测量数据标准,它是允许直接比较空间变量的惟一标准)。
40、根据样本进行推理的取样原则——未取样位置的数据可以从已取样位置的数据中推测出来;区域边界内的数据可以合并计算;一组空间单元中的数据能够转换成具有不同空间配置的另外一组空间单元数据。常用的方法:内插法:当有数值边界或知道缺失部分两端数值;外推法:当缺失的数据一侧有数值,而另一侧每一数值。








何为地理信息系统?你知道吗?
我也是刚刚找到的,大家共享
--------------------------------------------------------------------------------
以下内容只有回复后才可以浏览
地理信息系统(Geographic Information System)通俗地讲,它是整个地球或部分区域的资源、环境在计算机中的缩影。严格地讲,它是反映人们赖以生存的现实世界(资源或环境)的现势与变迁的各类空间数据及描述这些空间数据特征的属性,在计算机软件和硬件的支持下,以一定的格式输入、存贮、检索、显示和综合分析应用的技术系统。它是一种特定而又十分重要的空间信息系统,它是以采集、贮存、管理、处理分析和描述整个或部分地球表面(包括大气层在内)与空间和地理分布有关的数据的空间信息系统。地理信息系统(GIS)作为支持空间定位信息数字化获取,管理和应用的技术体系.随着计算机技术、空间技术和现代信息基础设施的飞速发展,在全国经济信息 化进程中的重要性与日俱增。特别是当今“数字地球“概念的提出,使得人们对GIS的重要性有了更深地了解。进入90年以来,地理信息系统在全球得到了空前迅速的发展,广泛应用于各个领域,产生了巨大的经济和社会效益。  
GIS是六十年代中期开始发展起来的新技术。它最初为解决地理问题而起,至今已成为一门涉及测绘学科,环境科学、计算机技术等多学科的交叉学科。1963年加拿大测量学家R.F Tomlinson首先提出了地理信息系统这一术语,并建成世界上第一个GIS(加拿大地理信息系统CGIS),并用于自然资源的管理和规划。不久,美国哈佛大学提出了较完整的系统软件SYMAP。这可算是GIS的起步。进入70年代以后,由于计算机软硬件水平的提高,促使GIS朝着实用方向迅速发展,一些经济发达国家先后建立了许多专业性的GIS,在自然资源管理和规划方面发挥了重大的作用。如,从1970年到1976年,美国国家地质调查局就建成50多个信息系统。其他国家如加拿大、德国、瑞典和日本等国了相继发展了自己的GIS。80年代后兴起的计算机网络技术使地理信息的传输时效得到了极大的提高,它的应用从基础信息管理与规划转向更复杂的实际应用,成为辅助决策的工具,并促进了地理信息产业的形成。到1995年,市场上有报价的软件已达上千种,并且涌现出了一些有代表性的GIS软件。
国产GIS的发展虽然较晚,经历了四个阶段,即起步(1970-1980)、准备(1980-1985)、发展(1985-1995)、产业化(1996以后)阶段。GIS已在许多部门和领域得到应用,并引起了政府部门的高度重视。从应用方面看,地理信息系统已在资源开发、环境保护、城市规划建设、土地管理、农作物调查与结产、交通、能源、通讯、地图测绘、林业、房地产开发、自然灾害的监测与评估、金融、保险、石油与天然气、军事、犯罪分析、运输与导航、110报警系统公共汽车调度等方面得到了具体应用。国内外已有城市测绘地理信息系统或测绘数据库正在运行或建设中。一批地理信息系统软件已研制开发成功(如GeoSTAR,CityStar,MapGIS等),一批高等院校已设立了一些与GIS有关的专业或学科,一批专门从事GIS产业活动的高新技术产业相继成立。些外,还成立了“中国GIS协会“和“中国GPS技术应用协会“等。


[推荐]GIS能做什么?
用回复贴是为了让更多人看见:)

--------------------------------------------------------------------------------
以下内容只有回复后才可以浏览

举几个有趣的例子


进行地理信息查询和分析

GIS搜索数据库并进行地理信息查询的能力,节约了许多公司数以百万计的美元。GIS可
以:

缩短回答客户请求的时间
找到适合于开发的土地
在粮食、土壤和天气之间找寻相关关系
电气线路故障定位

房地产经纪人可以用GIS在一定的区域内寻找满足下列条件的所有房屋:瓦盖的屋顶、
五个房间,并可列出它们的所有特点。
查询可以通过增加准则来进一步细化:房价必须每平方英尺少于100美元。还可以列出这
些房屋离学校在一定的距离之内。

改进机构集成
许多采用了GIS的机构发现其主要效益之一是改进了它们自己的机构和资源的管理。由于
GIS具有将数据集合和地理信息链接起来的能力,促使它们之间共享和交流局部信息。通
过产生可共享的数据库,一个部门可从另一个部门的工作中得到好处,这是由于数据只
需采集一次,但应用多次。
由于个人和部门之间的通讯在增加,冗余被减少,生产力提高,整体组织效率改进。因
此,在一个有效的公司里,用户和基本建设数据库可以集成在一起,这样,当需要进行
维护时,受影响的用户会得到计算机发出的信件。

做出好的决定
一个古老的格言“好的信息导致好的决定”,对于GIS和其他信息系统来说都是正确的。
然而,一个地理信息系统(GIS),并不是一个自动决策系统,而是一个查询、分析和支
持作出决策处理的图件数据工具。GIS技术已经被用于帮助完成一些任务,例如:为计划
调查提供信息,帮助解决领土争端,以最小化视觉干扰为原则设置路标。
GIS可以用于帮助一个新房址的选定,以使其受环境影响最小,在低风险区域,离人口聚
集地近。可以以地图和附加报告的方式简洁而清晰的提供这个信息,使决策者集中精力
于实际的问题,而不是花时间去理解数据。由于GIS结果能够很快地获得,多个假想的结
果可以被高效地评价。

制图
图件在GIS中占有重要的一席之地。GIS的制图方法比传统的人工或自动绘图方法要灵活
得多。她开始于数据库的创建。已经存在的纸张图件可以进行数字化,并可以把计算机
兼容的信息转换到GIS中。以GIS为基础的图形数据库是可以延续的,比例尺也不受限制
。图件可以以任何地点为中心,比例尺任意,使用突出效果的特殊字符有效地显示所选
择的信息。
地图集和地图丛书的特征可以用计算机程序编码,并与最终的数据库产品相比较。在其
他GIS中使用的数字化产品还可以来自数据库的简单拷贝。在一个大的组织机构中,地形
数据库可以被其他部门用作参考构架。
 

你可能感兴趣的:(数据库,网格,图形,数据结构,工具,网络)