- Matplotlib-图像处理与可视化
Matplotlib-图像处理与可视化一、图像数据的本质:从数组到像素二、基础操作:加载与显示图像1.加载图像数据2.显示单张图像3.显示灰度图像三、进阶可视化:通道分离与色彩调整1.分离RGB通道2.调整亮度与对比度四、实用技巧:色彩映射与像素值分析1.自定义色彩映射(Colormap)2.像素值分布直方图五、多图对比与标注:算法结果可视化1.边缘检测结果对比2.图像标注:突出感兴趣区域六、注意
- 用Python做数据分析之数据统计
学掌门
Python数据分析大数据python数据分析人工智能
接下来说说数据统计部分,这里主要介绍数据采样,标准差,协方差和相关系数的使用方法。1、数据采样Excel的数据分析功能中提供了数据抽样的功能,如下图所示。Python通过sample函数完成数据采样。2、数据抽样Sample是进行数据采样的函数,设置n的数量就可以了。函数自动返回参与的结果。1#简单的数据采样2df_inner.sample(n=3)3、简单随机采样Weights参数是采样的权重,
- Python 语音识别系列-实战学习-语音识别特征提取
Python语音识别系列-实战学习-语音识别特征提取前言1.预加重、分帧和加窗2.提取特征3.可视化特征4.总结前言语音识别特征提取是语音处理中的一个重要环节,其主要任务是将连续的时域语音信号转换为连续的特征向量,以便于后续的语音识别和语音处理任务。在特征提取阶段,这些特征向量能够捕捉到语音信号中的关键信息,如音调、音色和音节等。特征提取主要可以分为以下几个方面:时域特征提取:包括自相关函数、方差
- 数据可视化5:MATLAB绘制单组箱线图
箱线图的作用箱形图(又称为「盒须图」或「箱线图」)能方便显示数字数据组的四分位数。箱形图通常用于描述性统计,是以图形方式快速查看一个或多个数据集的好方法。虽然与直方图或密度图相比似乎有点原始,但它们占用较少空间,当要比较很多组或数据集之间的分布时便相当有用。箱线图基本描述该图展示的是一个箱线图(BoxPlot)的主要组成部分及其含义。箱线图是一种用于展示数据分布情况的统计图表,能够直观地反映数据的
- 4篇2章5节:ANOVA 功效的单次精确模拟与可视化全解析
MD分析
用R探索医药数据科学r语言-4.2.1r语言功效曲线单次精确模拟分析
在医学研究尤其是糖尿病等干预性试验中,精准的实验设计与功效分析是确保研究价值的关键。R语言为重复测量方差分析(ANOVA)提供了强大工具,从实验设计构建、单次精确模拟分析,到功效曲线可视化,覆盖研究全流程。本文结合糖尿病胰岛素治疗试验案例,深度拆解函数的应用逻辑,手把手教你用数据驱动实验设计,让“样本量规划”“效应检测能力”从抽象概念变为可操作、可视化的研究支撑。一、相关函数的介绍在医学研究中,实
- halcon算子翻译——gray_histo和gray_histo_abs
机器人自动化控制
HALCON
算子:gray_histo(Regions,Image:::AbsoluteHisto,RelativeHisto)功能:计算灰度值分布。算子gray_histo为区域内的图像计算灰度值的绝对和相对的直方图。两个直方图都是256个值的元组,它们从0开始,包含图像的各个灰度值的频率。输入参数:Regions:输入计算的区域;Image:输入图像(byte/cyclic/direction/intl/
- (五)PS识别:压缩痕迹挖掘-压缩量化表与 DCT 系数分析
超龄超能程序猿
机器学习python图像处理人工智能计算机视觉
(一)PS识别:Python图像分析PS识别之道(二)PS识别:特征识别-直方图分析的从原理到实现(三)PS识别:基于噪声分析PS识别的技术实现(四)PS识别:基于边缘纹理检测分析PS识别的技术实现一介绍本文将介绍一种基于量化表分析和DCT系数分析的图片PS检测方法,帮助你判断图片是否经过处理。二实现原理量化表分析在JPEG图片的压缩过程中,量化表起着关键作用。不同的软件或处理操作可能会改变量化表
- 医咖会免费STATA教程学习笔记——单因素方差分析
Unacandoit
stata单因素方差分析
单因素方差分析和单因素回归分析相同1.单因素方差分析需要满足的假设:(1)因变量为连续变量(2)至少有一个分类变量(大于等于2类)(3)观测值相互独立(4)没有异常值(5)服从正态分布(6)方差齐性2.准备工作(1)导入数据集:webusesystolic,clear(2)检验是否存在异常值:方法一:图形——箱线图——在变量中选择systolic——确定方法二:grahboxsystolic,ov
- 初始CNN(卷积神经网络)
超龄超能程序猿
机器学习cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)作为深度学习的重要分支,在图像识别、目标检测、语义分割等领域大放异彩。无论是手机上的人脸识别解锁,还是自动驾驶汽车对道路和行人的识别,背后都离不开CNN的强大能力一、CNN诞生的背景与意义在CNN出现之前,传统的图像识别方法主要依赖人工提取特征,例如使用SIFT(尺度不变特征变换)、HOG(方向梯度直方图)等算法。这些
- 水下目标检测:突破与创新
加油吧zkf
目标跟踪人工智能计算机视觉
水下目标检测技术背景水下环境带来独特挑战:光线衰减导致对比度降低,散射引发图像模糊,色偏使颜色失真。动态水流造成目标形变,小目标(如10×10像素海胆)检测困难。声呐与光学数据融合可提升精度,但多模态对齐仍是技术难点。核心算法实现要点图像预处理直方图均衡化与Retinex算法结合改善对比度和色偏:defsingle_scale_retinex(img,sigma):retinex=np.log10
- R语言学习笔记之十
摘要:仅用于记录R语言学习过程:内容提要:描述性统计;t检验;数据转换;方差分析;卡方检验;回归分析与模型诊断;生存分析;COX回归写在正文前的话,关于基础知识,此篇为终结篇,笔记来自医学方的课程,仅用于学习R的过程。正文:描述性统计n如何去生成table1用table()函数,快速汇总频数u生成四格表:table(行名,列名)>table(tips$sex,tips$smoker)NoYesFe
- 计算机视觉 OpenCV Android | Mat像素操作(图像像素的读写、均值方差、算术、逻辑等运算、权重叠加、归一化等操作)...
凌川江雪
本文目录1.像素读写2.图像通道与均值方差计算3.算术操作与调整图像的亮度和对比度4.基于权重的图像叠加5.Mat的其他各种像素操作1.像素读写Mat作为图像容器,其数据部分存储了图像的像素数据,我们可以通过相关的API来获取图像数据部分;在获取图像数据的时候,知道Mat的类型与通道数目关重要,根据Mat的类型与通道数目,开辟适当大小的内存空间,然后通过get方法就可以循环实现每个像素点值的读取、
- 38、Seabor的联合图和成对图的绘制【用Python进行AI数据分析进阶教程】
理工男大辉郎
python人工智能数据分析
用Python进行AI数据分析进阶教程38:Seabor的联合图和成对图的绘制关键词:Seaborn、联合图(JointPlot)、成对图(PairPlot)、数据类型、变量关系摘要:本文介绍了Seaborn库中的联合图(JointPlot)和成对图(PairPlot)的绘制方法。联合图用于展示两个变量之间的关系及各自分布,支持散点图、直方图、核密度估计图等多种类型,适用于连续型变量分析,可自定义
- Python时域信号特征提取技术要点
路怜涯
本文还有配套的精品资源,点击获取简介:在机器学习领域,时域信号特征提取是数据预处理的关键环节,特别是对于时间序列数据。时域信号特征包括信号的基本特性量,如平均值、中值、峰值、谷值、峰谷差、方差、标准差、极值点、峭度与峰度、自相关函数、滑动窗口统计、傅立叶变换和小波分析等。使用Python中的NumPy、Pandas和SciPy库可以帮助我们计算这些特征,并为机器学习模型训练准备数据。本文将介绍如何
- 高斯混合模型GMM&K均值(十三-1)——K均值是高斯混合模型的特例
phoenix@Capricornus
模式识别与机器学习均值算法机器学习算法
EM算法与K均值算法的关系K均值可以看成是高斯混合模型的特例。对K均值算法与EM算法进行比较后,可以发现它们之间有很大的相似性。K均值算法将数据点硬(hard)分配到聚类中,每个数据点唯一地与一个聚类相关联,而EM算法基于后验概率进行软(soft)分配。事实上,可以从EM算法推导出K均值算法。考虑一个高斯混合模型,其中混合分量的协方差矩阵由σ2I{\sigma^2}Iσ2I给出,其中σ2{\sig
- 10个基于Python的计算机视觉实战项目
云博士的AI课堂
基于Python计算机视觉python计算机视觉机器视觉人工智能
10个基于Python的计算机视觉实战项目,涵盖多个领域和应用场景,每个项目均附有GitHub地址、概述、解决的问题及应用场景:1.PCV图像处理与计算机视觉库GitHub地址:jesolem/PCV概述:提供计算机视觉基础算法的Python实现,包括图像分割、直方图均衡化、图像增强等。解决的问题:简化图像处理流程,支持快速实现算法原型。应用场景:学术研究、教学实验、图像预处理任务。2.基于朴素贝
- 详解3DGS
一碗姜汤
计算机视觉人工智能计算机视觉
4可微分的3D高斯splatting核心目标与表示选择我们的目标是从无法线的稀疏SfM点出发,优化出一种能够实现高质量新视角合成的场景表示。为此,我们选择3D高斯作为基本图元,它兼具可微分的体表示特性和非结构化的显式表示优势,既能支持优化过程,又能实现快速渲染。高斯参数与投影模型3D高斯定义高斯由世界空间中的均值(位置)μ\muμ和协方差矩阵∑\sum∑定义,其概率密度函数为:G(x)=e−12(
- LightGBM:极速梯度提升机——结构化数据建模的终极武器
大千AI助手
人工智能Python#OTHER随机森林算法机器学习决策树人工智能GBDTLightGBM
基于直方图与Leaf-wise生长的高效GBDT实现,横扫Kaggle与工业场景一、为什么需要LightGBM?GBDT的瓶颈传统梯度提升树(如XGBoost)在处理海量数据时面临两大痛点:训练速度慢:需预排序特征&层次生长(Level-wise)内存消耗高:存储特征值与分裂点信息LightGBM的诞生微软亚洲研究院于2017年开源,核心目标:✅训练效率提升10倍✅内存占用降低50%✅保持与XGB
- GIF&DDE
qq_39573780
红外图像处理计算机视觉算法
红外图像动态范围压缩GIF&DDE本文主要介绍了一种高动态范围图像转化为8位可视图像的方法,根据论文[[1]][id]总结实现算法流程图1:算法流程图步骤:使用导向滤波将图像分为基础层和细节层,基础层表示图像的整体结构信息,细节层表示图像的细节纹理信息。对基础层使用直方图投影操作,将图像的动态范围从[0,65535]映射到[0,255]对细节层使用增益掩膜进行增强对基础层和细节层加权求和得到输出图
- 【机器人-深度估计】双目深度估计原理解析
文章目录一、基本原理二、主要处理流程2.1.匹配代价(MatchingCost)(1)常见匹配代价函数1.绝对差(SAD,SumofAbsoluteDifferences)2.平方差(SSD,SumofSquaredDifferences)3.归一化互相关(NCC,NormalizedCross-Correlation)4.Census变换(2)匹配代价函数对比2.2.代价体(CostVolume
- Kaggle金牌方案复现:CGO-Transformer-GRU多模态融合预测实战
1背景分析在2023年Kaggle"GlobalMultimodalDemandForecastingChallenge"竞赛中,CGO-Transformer-GRU方案以领先第二名1.8个百分点的绝对优势夺冠,创下该赛事三年来的最佳成绩。本方案创新性地融合了协方差引导优化(CGO)、注意力机制和时序建模三大技术模块,解决了多模态数据融合中的关键挑战:模态对齐、特征冲突和时序依赖建模。(1)多模
- 传统蒙特卡洛(Monte Carlo, MC)方法在强化学习中直接把整条回报序列当作“真值”来估计价值函数,通常配合表格化存储,因此无需环境模型且估计无偏,但只能处理有限状态-动作空间且方差较大
强化学习曾小健
人工智能
传统蒙特卡洛(MonteCarlo,MC)方法在强化学习中直接把整条回报序列当作“真值”来估计价值函数,通常配合表格化存储,因此无需环境模型且估计无偏,但只能处理有限状态-动作空间且方差较大medium.comanalyticsvidhya.comincompleteideas.net。“深度蒙特卡洛”(DeepMonteCarlo,DMC)则保留“按回报直接更新”的思想,却用深度网络来逼近$Q(
- python实战项目77:足球运动员数据分析
wp_tao
Python副业接单实战项目python数据分析开发语言
python实战项目77:足球运动员数据分析一、数据集介绍二、加载数据集三、查看数据3.1查看数据大小3.2查看数据前几行3.3查看数据基本信息四、数据预处理4.1查看并处理缺失值4.2查看并处理重复值五、运动员身高和体重分布5.1查看身高和体重列数据情况5.2数据类型转换5.3绘制身高分布直方图5.3绘制体重分布直方图5.4统计运动员左右脚比例六、俱乐部球员评分分析6.1俱乐部球员平均分top1
- 图片批量去重---(均值哈希、插值哈希、感知哈希、三/单通道直方图)
ghx3110
数据/脚本处理均值算法哈希算法直方图图片去重
一、整体步骤本脚本中,关键步骤包括以下步骤:1、图片加载:脚本会遍历指定的图片目录,将所有图片加载到内存中。2、图像预处理:比较之前,通常需要对图片进行预处理,如调整大小、灰度化或直方图均衡化,以消除颜色、尺寸等因素的影响。3、相似度计算:图像相似度的衡量有很多种方法,如像素级别的差异(均方误差)、结构相似度指数(SSIM)、归一化互信息(NMI)或者哈希算法(如PCA-SIFT、BRIEF等)。
- 数据处理与统计分析——11-Pandas-Seaborn可视化
零光速
数据分析pandaspython开发语言数据分析
Seaborn简介Seaborn是一个基于Matplotlib的图形可视化Python库,提供了高度交互式的接口,使用户能够轻松绘制各种吸引人的统计图表。Seaborn可以直接使用Pandas的DataFrame和Series数据进行绘图。1.Seaborn绘制单变量图(1)直方图histplothue:根据另一个分类变量对数据进行分组并显示不同颜色的直方图。kde:是否绘制核密度估计曲线。其他常
- 特征筛选方法总结(面试准备15)
爱学习的uu
人工智能大数据数据挖掘决策树
非模型方法一.FILTER过滤法:1.缺失值比例(80%以上缺失则删除)/方差注意:连续变量只删方差为0的,因为变量取值范围会影响方差大小。离散类的看各类取值占比,如果是三分类变量可以视作连续变量。函数:VarianceThreshold二.假设检验:卡方检验看离散变量是否独立方差分析看离散和连续变量是否独立F检验看连续变量是否独立三.互信息的关联度指标:相关系数(f_regression:是相关
- 【对比】DeepAR 和 N-Beats
TIM老师
时序预测
1.DeepAR1.1核心思想提出者:亚马逊(Amazon)团队于2018年提出。目标:针对多变量时间序列进行概率预测(ProbabilisticForecasting),输出预测值的分布(如均值、方差、置信区间),而非单一确定性预测。适用场景:适用于具有多变量、多目标的时间序列预测任务(如零售销售预测、能源负荷预测)。1.2模型结构RNN架构:基于长短时记忆网络(LSTM)或门控循环单元(GRU
- day35
m0_62568655
python训练营人工智能
一、模型可视化用torchinfo看模型结构能快速打印模型各层的输入输出形状、参数数量,还会统计总参数量、计算量等信息,像给模型做“结构清单”,方便确认架构是否正确。就像查户口本,能直接列出模型每一层的“家庭成员”(输入输出尺寸、参数数量),还能算全家总参数、占多大内存,一看就知道模型搭得对不对。看权重分布将模型参数(权重)的数值分布绘制成直方图或热力图,通过观察参数是否集中、有无异常值,判断训练
- Docker 快速搭建一个基于 GPT-Vis 组件的统计图表生成服务
计算机小手
经验分享docker开源软件
以下是对工具简单介绍:可以在服务端使用GPT-Vis统计图表组件直接渲染成图片支持Docker一键部署,提供统计图表渲染生成API接口支持多种GPT-Vis支持的组件,包括折线图、柱形图、饼图、面积图、条形图、直方图、散点图、词云图、雷达图、思维导图、流程图等等可以作为MCP工具MCPServerChart的私有后端服务,参考:https://github.com/antvis/mcp-serve
- 主成分分析(PCA)例题——给定协方差矩阵
phoenix@Capricornus
PR书稿矩阵线性代数
向量xxx的相关矩阵为Rx=[0.30.10.10.10.3−0.10.1−0.10.3]{\bmR}_x=\begin{bmatrix}0.3&0.1&0.1\\0.1&0.3&-0.1\\0.1&-0.1&0.3\end{bmatrix}Rx=0.30.10.10.10.3−0.10.1−0.10.3计算输入向量的KL变换。解答Rx{\bmR}_xRx的特征值为λ0=0.1\lambda_0=
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (
[email protected]), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu