np.concatenate函数和np.append函数用于数组拼接

一:np.concatenate()

  • 函数介绍:np.concatenate((a, b), axis=0)
  • 参数意思:a和b都为数组,axis可以选择大小,axis=0 按照行拼接。axis=1 按照列拼接。
    对于一维数组,情况如下:
import numpy as np
a = np.array([1, 2])
b = np.array([5, 6])
c = np.array([3, 4])
print(np.concatenate((a,b,c)))

运行结果:

在这里插入图片描述
对于二维数组,情况如下:

import numpy as np
a = np.array([[1, 2],[3,4]])
b = np.array([[5, 6],[4,5],[3,1],[3,2]])
print('将b进行转置')
print(b.T) # 将b进行转置 这样能保证与a行数相同
print('将a和b按行拼接')
print(np.concatenate((a,b),axis=0)) # 按行拼接
print('将a和b按列拼接')
print(np.concatenate((a,b.T),axis=1)) # 按列拼接

运行结果:
np.concatenate函数和np.append函数用于数组拼接_第1张图片

二:np.append()

  • 函数介绍:np.append(arr1, arr2, axis=None)
  • 参数意思:arr1和arr2为两个矩阵,axis:可选参数,如果axis没有给出,那么arr,values都将先展平成一维数组。注:如果axis被指定了,那么arr和values需要有相同的shape,否则报错
    对于一维数组,情况如下:

对于一维数组,情况如下:

import numpy as np
a=np.array([1,2])
b=np.array([3,4])
print('一维数组拼接:',np.append(a,b))

运行结果:
在这里插入图片描述
对于二维数组,情况如下:

import numpy as np
a1 = np.array([[1, 2], [3, 4]])
b1 = np.array([[5, 6],[2,3]])
print('二维数组拼接:',np.append(a1,b1))
print('二维数组列拼接:')
print(np.append(a1,b1,axis=1))
print('二维数组行拼接:')
print(np.append(a1,b1,axis=0))

运行结果:

np.concatenate函数和np.append函数用于数组拼接_第2张图片

你可能感兴趣的:(神经网络与深度学习,python)