- 大数据学习(75)-大数据组件总结
viperrrrrrr
大数据impalayarnhdfshiveCDHmapreduce
大数据学习系列专栏:哲学语录:用力所能及,改变世界。如果觉得博主的文章还不错的话,请点赞+收藏⭐️+留言支持一下博主哦一、CDHCDH(ClouderaDistributionIncludingApacheHadoop)是由Cloudera公司提供的一个集成了ApacheHadoop以及相关生态系统的发行版本。CDH是一个大数据平台,简化和加速了大数据处理分析的部署和管理。CDH提供Hadoop的
- 大数据点燃智能制造变革之火——从数据到价值的跃迁
Echo_Wish
大数据高阶实战秘籍大数据制造
大数据点燃智能制造变革之火——从数据到价值的跃迁在全球制造业向智能化转型的浪潮中,大数据已然成为点燃变革的关键火种。从车间到供应链,从设备到产品生命周期,制造业正通过大数据分析找到隐形的效率优化机会,打破传统生产模式的桎梏。作为Echo_Wish,今天我将和大家探讨大数据如何融入智能制造,助力实现生产效率和业务价值的双重飞跃。一、智能制造的核心诉求:数据驱动的决策与执行智能制造的目标是通过数据驱动
- Sqoop安装部署
愿与狸花过一生
大数据sqoophadoophive
ApacheSqoop简介Sqoop(SQL-to-Hadoop)是Apache开源项目,主要用于:将关系型数据库中的数据导入Hadoop分布式文件系统(HDFS)或相关组件(如Hive、HBase)。将Hadoop处理后的数据导出回关系型数据库。核心特性批量数据传输支持从数据库表到HDFS/Hive的全量或增量数据迁移。并行化处理基于MapReduce实现并行导入导出,提升大数据量场景的效率。自
- AI预测体彩排3新模型百十个定位预测+胆码预测+杀和尾+杀和值2025年3月21日第25弹
GIS小天
体彩排3人工智能机器学习彩票算法
前面由于工作原因停更了很长时间,停更期间很多彩友一直私信我何时恢复发布每日预测,目前手头上的项目已经基本收尾,接下来恢复发布。当然,也有很多朋友一直咨询3D超级助手开发的进度,在这里统一回复下。由于本人既精通编程+大数据分析,也热衷于彩票研究,所以很多彩友通过一些渠道找到了我。目前,加我的已有不少彩友,分成了3类人群:第一类:平时不懂数据分析,买彩全靠瞎猜乱蒙,这些朋友希望借助我的技术和方法来给他
- Zynq PL端IP核之AXI DMA
Mazy.v
fpga开发嵌入式硬件arm开发单片机
1.AXIDMA简介Zynq提供了两种DMA,一种是PS中的DMA控制器,通过GP口与PL端连接,另一种是PL中的AXIDMAIP核(软核),通过HP口与PS端连接。Zynq有4个HP接口,每一个HP接口都包含控制和数据FIFO,这些FIFO为大数据量突发传输提供缓冲,让HP接口成为理想的高速数据传输接口。AXIDMAIP内核在AXI4内存映射和AXI4StreamIP接口之间提供高带宽直接储存访
- 揭秘时空大数据:详细介绍、真实应用场景和数据示例解析
陈书予
GIS开发(时空大数据)前端大数据python时序数据库
时空大数据(SpatialBigData)是指利用空间环境和时间环境信息,以及数字技术,从多种来源获取的海量、动态的、多维的数据,对空间环境和时间环境进行实时监测,并基于复杂的数据分析和挖掘,获取有价值的信息。时空大数据示例:1)社会网络数据:Twitter、Facebook、Instagram等社交媒体上的海量数据,可以通过时间、空间、主题等来提取有价值的信息。2)遥感图像数据:通过遥感技术从卫
- python基于Django的旅游景点数据分析及可视化的设计与实现 7blk7
qq2295116502
pythondjango数据分析
目录项目介绍技术栈具体实现截图Scrapy爬虫框架关键技术和使用的工具环境等的说明解决的思路开发流程爬虫核心代码展示系统设计论文书写大纲详细视频演示源码获取项目介绍大数据分析是现下比较热门的词汇,通过分析之后可以得到更多深入且有价值的信息。现实的科技手段中,越来越多的应用都会涉及到大数据随着大数据时代的到来,数据挖掘、分析与应用成为多个行业的关键,本课题首先介绍了网络爬虫的基本概念以及技术实现方法
- 存算一体与存算分离:架构设计的深度解析与实现方案
克里斯蒂亚诺罗纳尔多阿维罗
大数据数据库
随着数据量的不断增大和对计算能力的需求日益提高,存算一体作为一种新型架构设计理念,在大数据处理、云计算和人工智能等领域正逐步引起广泛关注。在深入探讨存算一体之前,我们需要先了解存储和计算的基本概念,以及存算分离和存算一体之间的区别。什么是存算一体?存算一体,顾名思义,是将数据存储与计算资源紧密结合,形成一个统一的架构。在这种架构下,存储和计算不仅在物理层面上结合,更在架构设计上深度融合。具体来说,
- LakeHouse湖仓一体成为下一站灯塔,数仓、数据湖架构即将退出群聊
科杰科技
大数据数据仓库
摘要:当前的大数据技术应用趋势表明,客户对单一的数据湖和数仓架构并不满意。近年来几乎所有的数据仓库都增加了对Parquet和ORC格式的外部表支持,这使数仓用户可以从相同的SQL引擎查询数据湖表,但它不会使数据湖表更易于管理,也不会消除仓库中数据的ETL复杂性、陈旧性和高级分析挑战。KeenDataLakeHouse(湖仓一体)作为新一代大数据技术架构,将逐渐取代单一数据湖和数仓架构,成为大数据架
- ElasticSearch Java查询实现详解
当牛作馬
ElasticSearch使用elasticsearchjavajenkins
文章目录前言一、环境准备二.连接到ElasticSearch三.实现各种查询1匹配查询(MatchQuery)2术语查询(TermQuery)3范围查询(RangeQuery)4复合查询(BoolQuery)5.术语聚合(TermsAggregation)5.平均值聚合(AvgAggregation)6.最大值聚合(MaxAggregation)与最小值聚合(MinAggregation)7.日期
- 数据让农业更聪明——用大数据激活田间地头
Echo_Wish
大数据大数据
数据让农业更聪明——用大数据激活田间地头在农业领域,随着人口增长和气候变化的影响,如何提升生产力始终是个关键话题。大数据,这个曾经只属于科技领域的概念,如今已悄然进入田间地头。今天,我以Echo_Wish的视角,和大家聊聊大数据如何赋能农业生产力,帮农民在阳光下也能掌握“科技的钥匙”。认识农业中的大数据什么是农业中的“大数据”?简单来说,就是收集和分析有关土地、气候、作物、病虫害以及市场需求等方面
- GraphCube、Spark和深度学习技术赋能快消行业关键运营环节
weixin_30777913
开发语言大数据深度学习人工智能spark
在快消品(FMCG)行业,需求计划(DemandPlanning)、库存管理(InventoryManagement)和需求供应管理(DemandSupplyManagement)是影响企业整体效率和利润水平的关键运营环节。GraphCube图多维数据集技术、Spark大数据分析处理技术和深度学习技术的结合,为这些环节提供了智能化、动态化和实时化的解决方案,显著提升业务运营效率和企业利润。一、技术
- 从 0 到 1 构建 Python 分布式爬虫,实现搜索引擎全攻略
七七知享
Pythonpython分布式爬虫搜索引擎算法程序人生网络爬虫
从0到1构建Python分布式爬虫,实现搜索引擎全攻略在大数据与信息爆炸的时代,搜索引擎已然成为人们获取信息的关键入口。你是否好奇,像百度、谷歌这般强大的搜索引擎,背后是如何精准且高效地抓取海量网页数据的?本文将带你一探究竟,以Python为工具,打造属于自己的分布式爬虫,进而搭建一个简易搜索引擎,完整呈现从底层代码编写到系统搭建的全过程。通过本文的实践,我们成功打造了Python分布式爬虫,并以
- 第三十篇 维度建模:从理论到落地的企业级实践
随缘而动,随遇而安
数据库sql数据仓库大数据数据库架构
目录一、维度建模核心理论体系1.1Kimball方法论四大支柱1.2关键概念对比矩阵二、四步建模法全流程解析2.1选择业务过程(以电商为例)2.2声明原子粒度(订单案例)2.3维度设计规范时间维度(含财年逻辑)SCDType2完整实现(Hudi)2.4事实表类型与设计三、企业级建模实战:电商用户分析3.1业务矩阵分析3.2模型实现代码四、高级建模技巧4.1多星型模式关联4.2大数据场景优化五、性能
- 计算机专业毕业设计题目推荐(新颖选题)本科计算机人工智能专业相关毕业设计选题大全✅
会写代码的羊
毕设选题课程设计人工智能毕业设计毕设题目毕业设计题目aiAI编程
文章目录前言最新毕设选题(建议收藏起来)本科计算机人工智能专业相关的毕业设计选题毕设作品推荐前言2025全新毕业设计项目博主介绍:✌全网粉丝10W+,CSDN全栈领域优质创作者,博客之星、掘金/华为云/阿里云等平台优质作者。技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、大数据、机器学习等设计与开发。主要内容:免费功能
- 深陷“大数据杀熟”漩涡的飞猪,庄卓然如何力挽狂澜?
财经三剑客
大数据
在线旅游市场(OTA)的蓬勃发展为消费者带来了诸多便利,然而,在这股数字化浪潮中,飞猪旅行却因其频繁陷入“大数据杀熟”的争议而备受瞩目。这一行为不仅损害了消费者的合法权益,更让飞猪的品牌形象蒙上了一层阴影。近年来,飞猪平台上关于价格乱象的投诉屡禁不止。在黑猫投诉平台上,与“飞猪”相关的投诉累计已超9万条,其中直接以“飞猪杀熟”为关键词的投诉便达数百条。消费者们纷纷反映,在飞猪平台上预订机票、酒店等
- API item_get 在电商平台的核心作用以及如何测试
index_all
数据供应商京东apijava大数据开发语言
在电商行业蓬勃发展的今天,跨平台运营已成为众多商家的必然选择。然而,随之而来的数据孤岛问题却成为了制约电商企业进一步发展的瓶颈。为了解决这一问题,电商大数据平台应运而生,而item_getAPI作为获取商品详情的关键接口,在其中扮演着至关重要的角色。本文将深入探讨item_getAPI在跨平台电商数据整合中的应用与优势,为电商企业在数据驱动的道路上提供有力支持。一、跨平台电商数据整合的挑战在跨平台
- sc命令在windows上将elasticsearch和kibana自动作为服务开机启动
windowselastic
sc是Windows自带的命令行工具,用于管理服务。1.创建服务:打开命令提示符,运行以下命令:sccreateElasticsearchbinPath="D:\elasticsearch\bin\elasticsearch.bat"start=auto2.启动服务:创建后,启动服务:scstartElasticsearch亲测可用
- “四预”驱动数字孪生水利:让智慧治水守护山河安澜
GeoSaaS
实景三维智慧城市人工智能gis大数据安全
近年来,从黄河秋汛到海河特大洪水,从珠江流域性洪灾到长江罕见骤旱,极端天气频发让水安全问题备受关注。如何实现“治水于未发”?数字孪生水利以“预报、预警、预演、预案”(四预)为核心,正在掀起一场水利治理的智慧革命。一、数字孪生水利:从物理世界到虚拟镜像的跃迁数字孪生水利并非简单的“数字建模”,而是通过高精度传感器、大数据、人工智能等技术,在虚拟空间构建与物理流域完全映射的“数字分身”,实现水情、工情
- 数智读书笔记系列021《大数据医疗》:探索医疗行业的智能变革
Allen_Lyb
数智读书笔记大数据健康医疗人工智能python
一、书籍介绍《大数据医疗》由徐曼、沈江、余海燕合著,由机械工业出版社出版。徐曼是南开大学商学院副教授,在大数据驱动的智能决策研究领域颇有建树,尤其在大数据驱动的医疗与健康决策方面有着深入研究,曾获天津优秀博士论文、教育部博士研究生新人奖。沈江等作者也在相关学术和实践领域有着丰富的经验和深厚的专业知识。这本书系统且深入地探讨了大数据技术在医疗领域的应用与变革,对推动医疗行业的智能化发展具有重要的理论
- jieba库词频统计_jieba分词器(应用及字典的补充)及文档高频词提取实战
袁圆园建建
jieba库词频统计
jieba分词器是Python中最好的中文分词组件,本文讲解一下jieba分词器及其应用。1、jieba分词器的分词模式jieba分词器提供了三种常用的分词模式1、精确模式:将句子按照最精确的方法进行切分,适合用于进行文本分析;2、全模式:将句子当中所有可以成词的词语都扫描出来,分词速度很快但容易产生歧义;3、搜索引擎模式:在精确模式分词的基础上,将长的句子再次进行切分,提高召回率,适用于搜索引擎
- OpenEuler kinit报错找不到文件的解决办法
久违的太阳
其他故障处理服务器运维
客户一套华为大数据集群平台,在一台arm平台openEuler服务器上面安装完集群客户端之后,使用kinit认证出现报错Nosuchfileordirectory:最终定位是操作系统/lib64缺少ld包导致,执行下面的命令恢复:ln-sv/lib/ld-linux-aarch64.so.1/lib64/ld-linux-aarch64.so.1
- JAVA学习-练习试用Java实现“对大数据集中的网络日志进行解析和异常行为筛查”
守护者170
java学习java学习
问题:编写一个Spark程序,对大数据集中的网络日志进行解析和异常行为筛查。解答思路:下面是一个简单的Spark程序示例,用于解析网络日志并筛查异常行为。这个示例假设日志文件格式如下:timestamp,ip_address,user_id,action,event,extra_info2023-01-0112:00:00,192.168.1.1,123,login,success,none202
- JAVA学习-练习试用Java实现“实现一个Spark应用,对大数据集中的文本数据进行情感分析和关键词筛选”
守护者170
java学习java学习
问题:实现一个Spark应用,对大数据集中的文本数据进行情感分析和关键词筛选。解答思路:要实现一个Spark应用,对大数据集中的文本数据进行情感分析和关键词筛选,需要按照以下步骤进行:1.环境准备确保的环境中已经安装了ApacheSpark。可以从[ApacheSpark官网](https://spark.apache.org/downloads.html)下载并安装。2.创建Spark应用以下是
- 深度学习的颠覆性发展:从卷积神经网络到Transformer
AI天才研究院
AI大模型应用入门实战与进阶ChatGPT大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍深度学习是人工智能的核心技术之一,它通过模拟人类大脑中的神经网络学习从大数据中抽取知识,从而实现智能化的自动化处理。深度学习的发展历程可以分为以下几个阶段:2006年,GeoffreyHinton等人开始研究卷积神经网络(ConvolutionalNeuralNetworks,CNN),这是深度学习的第一个大突破。CNN主要应用于图像处理和语音识别等领域。2012年,AlexKrizh
- 从0到1:小白也能轻松上手的高清电影搜索引擎网站制作指南
计算机学长
网站制作搜索引擎前端服务器
引言在互联网飞速发展的当下,在线观影已成为人们日常娱乐不可或缺的一部分。据相关数据显示,2024年网络视频用户规模达到了惊人的规模,如此庞大的用户群体,对电影资源的需求自然也是水涨船高。然而,面对海量的电影资源,如何快速、准确地找到自己心仪的高清电影,却成了许多影迷的一大难题。各大视频平台资源分散,想要观看不同的电影,往往需要在多个平台之间来回切换,而且还可能面临付费门槛、广告干扰等问题。这时,一
- 知识管理系统:构建企业智慧大脑
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
第一部分:知识管理概述与重要性第1章:知识管理的定义与基本概念1.1.1知识管理的起源与发展知识管理(KnowledgeManagement,KM)起源于20世纪80年代,当时企业在市场竞争中逐渐意识到知识作为一种战略资源的重要性。早期的知识管理实践主要集中在知识的收集、存储和传播上。随着信息技术的发展,知识管理逐渐融入了更先进的技术手段,如数据挖掘、人工智能和大数据分析,使其成为一个跨学科、多领
- 探索 Tavily Search API:为 AI 提供快速准确的搜索结果
nseejrukjhad
人工智能python开发语言
引言在当今的技术时代,AI代理(如大型语言模型)日益需要实时、准确和事实性强的搜索结果。TavilySearchAPI就是为此而生的。这篇文章将介绍如何将TavilySearchAPI集成为一个检索器,使开发者可以在应用中快速获取所需信息。此外,我们将讨论这一集成过程中的挑战及其解决方案。主要内容1.TavilySearchAPI简介TavilySearchAPI是一个专门为AI代理设计的搜索引擎
- 使用 Tavily 搜索 API 获取实时精确搜索结果
fgayif
python数据库开发语言
技术背景介绍Tavily搜索API是一个专为AI代理(如大型语言模型)而设计的搜索引擎。它能够快速提供实时、准确且事实性强的搜索结果。这使得Tavily成为可以嵌入到AI应用中的理想工具,提升信息获取的效率和准确性。核心原理解析Tavily搜索API提供了异步的原生调用方式,可以返回包括标题、URL、内容和答案在内的数据。API可以根据需求设置不同的搜索深度和结果数量。通过与其他语言模型(如Ope
- 基于协同过滤推荐算法的景点票务数据系统(python-计算机毕设)
计算机程序设计(接毕设)
推荐算法机器学习毕业设计python人工智能
摘要IABSTRACTII第1章引言1研究背景及意义1研究背景1研究意义1国内外研究现状2智慧旅游3旅游大数据3研究内容4本章小结4第2章相关技术概述5基于内容的推荐算法5基于内容的推荐算法原理5基于内容的推荐算法实现5协同过滤推荐算法6协同过滤算法原理6协同过滤算法实现7SpringBoot框架9SpringBoot简介9SpringBoot特性10SpringBoot工作原理10Vue.js框
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分