第5周学习:ShuffleNet & EfficientNet & 迁移学习

ShuffleNet & EfficientNet & 迁移学习

  • ShuffleNet V1 & V2
  • EfficientNet网络
  • Transformer里的 multi-head self-attention
  • ShuffleNet & EfficientNet & 迁移学习
    • Step 1:下载数据
    • step 2:数据处理
    • step 3:创建VGG Model
    • step 4:修改最后一层,冻结前面层的参数
    • step 5:训练并测试全连接层
    • step 6:可视化模型预测结果(主观分析)
  • AI艺术鉴赏挑战赛 - 看画猜作者
    • data_count.py
    • dataload.py
    • train.py
    • test.py
    • ArtModel.py
    • vote.py

ShuffleNet V1 & V2

ShuffleNet V1框架:卷积层、最大池化下采样、Stage2、Stage3、Stage4、全局池化、全连接层
第5周学习:ShuffleNet & EfficientNet & 迁移学习_第1张图片
ResNeXt第二步group卷积因此/g,ShuffleNet同样,第二步DW卷积g=m,即约去一个m。
第5周学习:ShuffleNet & EfficientNet & 迁移学习_第2张图片
ShuffleNet V2:
主要拥有两个创新点:
(1)由于逐点卷积占了很大的计算量,所以使用pointwise group convolution 逐点分组卷积
(2)由于存在不同组之间特征通信问题,所以采用channel shuffle
第5周学习:ShuffleNet & EfficientNet & 迁移学习_第3张图片
第5周学习:ShuffleNet & EfficientNet & 迁移学习_第4张图片
网络四个设计原则:
(1)使用平衡convoluntions,让输入特征矩阵channel和输出特征矩阵channel比值为1
(2)注意group convolution的计算成本,不能一味增加group数
(3)降低网络训练程度
(4)尽可能减少使用element-wise opeartions张量操作

EfficientNet网络

EfficientNet与其他网络的对比:
第5周学习:ShuffleNet & EfficientNet & 迁移学习_第5张图片
第5周学习:ShuffleNet & EfficientNet & 迁移学习_第6张图片
采用不同的d,r组合,然后不断改变网络的width得到如下图所示的4条曲线,通过分析可以发现在相同的FLOPs下,同时增加d和r的效果最好。
第5周学习:ShuffleNet & EfficientNet & 迁移学习_第7张图片
下表为EfficientNet-B0的网络框架(B1-B7就是在B0的基础上修改Resolution,Channels以及Layers),可以看出网络总共分成了9个Stage,第一个Stage就是一个卷积核大小为3x3步距为2的普通卷积层(包含BN和激活函数Swish),Stage2~Stage8都是在重复堆叠MBConv结构(最后一列的Layers表示该Stage重复MBConv结构多少次),而Stage9由一个普通的1x1的卷积层(包含BN和激活函数Swish)一个平均池化层和一个全连接层组成。表格中每个MBConv后会跟一个数字1或6,这里的1或6就是倍率因子n即MBConv中第一个1x1的卷积层会将输入特征矩阵的channels扩充为n倍,其中k3x3或k5x5表示MBConv中Depthwise Conv所采用的卷积核大小。Channels表示通过该Stage后输出特征矩阵的Channels。
第5周学习:ShuffleNet & EfficientNet & 迁移学习_第8张图片

第5周学习:ShuffleNet & EfficientNet & 迁移学习_第9张图片
第5周学习:ShuffleNet & EfficientNet & 迁移学习_第10张图片

Transformer里的 multi-head self-attention

首先了解了self-attention,在一般任务的Encoder-Decoder框架中,输入Source和输出Target内容是不一样的,比如对于英-中机器翻译来说,Source是英文句子,Target是对应的翻译出的中文句子,Attention机制发生在Target的元素和Source中的所有元素之间。而Self Attention顾名思义,指的不是Target和Source之间的Attention机制,而是Source内部元素之间或者Target内部元素之间发生的Attention机制,也可以理解为Target=Source这种特殊情况下的注意力计算机制。其具体计算过程是一样的,只是计算对象发生了变化而已,相当于是Query=Key=Value,计算过程与attention一样。
基于Encoder-Decoder框架的模型Transformer结构图:
第5周学习:ShuffleNet & EfficientNet & 迁移学习_第11张图片
Multi-Head Attention模块和Self-Attention模块一样将 a i a_i ai分别通过 W q W^q Wq W k W^k Wk W v W^v Wv得到对应的 q i q^i qi k i k^i ki v i v^i vi,然后再根据使用的head数目h进一步把得到的 q i q^i qi k i k^i ki v i v^i vi均分成h份。比如下图中假设h=2然后 q 1 q^1 q1拆分成 q 1 , 1 q^{1,1} q1,1 q 1 , 2 q^{1,2} q1,2,那么 q 1 , 1 q^{1,1} q1,1就属于head1, q 1 , 2 q^{1,2} q1,2属于head2。第5周学习:ShuffleNet & EfficientNet & 迁移学习_第12张图片
也可以将 W i Q W^Q_i WiQ W i K W^K_i WiK W i V W^V_i WiV设置成对应值来实现均分,比如下图中的Q通过 W 1 Q W^Q_1 W1Q就能得到均分后的 Q 1 Q_1 Q1
第5周学习:ShuffleNet & EfficientNet & 迁移学习_第13张图片
通过上述方法就能得到每个 h e a d i head_i headi对应的 Q i Q_i Qi K i K_i Ki V i V_i Vi参数,接下来针对每个head使用和Self-Attention中相同的方法即可得到对应的结果。
第5周学习:ShuffleNet & EfficientNet & 迁移学习_第14张图片
第5周学习:ShuffleNet & EfficientNet & 迁移学习_第15张图片
接着将每个head得到的结果进行concat拼接,比如下图中 b 1 , 1 b_{1,1} b1,1 h e a d 1 head_1 head1得到的 b 1 b_1 b1)和 b 1 , 2 b_{1,2} b1,2 h e a d 2 head_2 head2得到的 b 1 b_1 b1)拼接在一起, b 2 , 1 b_{2,1} b2,1 h e a d 1 head_1 head1得到的 b 2 b_2 b2)和 b 2 , 2 b_{2,2} b2,2 h e a d 2 head_2 head2得到的 b 2 b_2 b2)拼接在一起。
第5周学习:ShuffleNet & EfficientNet & 迁移学习_第16张图片
接着将拼接后的结果通过 W O W^O WO(可学习的参数)进行融合,如下图所示,就可以得到最终的结果 b 1 b_1 b1 b 2 b_2 b2
Multi-Head Attention中的两个重要公式:
请添加图片描述

ShuffleNet & EfficientNet & 迁移学习

Step 1:下载数据

import numpy as np
import matplotlib.pyplot as plt
import os
import torch
import torch.nn as nn
import torchvision
from torchvision import models,transforms,datasets
import time
import json
# 判断是否存在GPU设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('Using gpu: %s ' % torch.cuda.is_available())

训练集包含1800张图(猫的图片900张,狗的图片900张),测试集包含2000张图

! wget http://fenggao-image.stor.sinaapp.com/dogscats.zip
! unzip dogscats.zip

step 2:数据处理

torchvision 支持对输入数据进行一些复杂的预处理/变换 (normalization, cropping, flipping, jittering 等,datasets 是 torchvision 中的一个包,可以用做加载图像数据。它可以以多线程(multi-thread)的形式从硬盘中读取数据,使用 mini-batch 的形式,在网络训练中向 GPU 输送。在使用CNN处理图像时,需要进行预处理。图片将被整理成 224×224×3的大小,同时还将进行归一化处理。

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

vgg_format = transforms.Compose([
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize,
            ])

data_dir = './dogscats'

dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format)
         for x in ['train', 'valid']}

dset_sizes = {x: len(dsets[x]) for x in ['train', 'valid']}
dset_classes = dsets['train'].classes

通过下面代码可以查看 dsets 的一些属性:

print(dsets['train'].classes)
print(dsets['train'].class_to_idx)
print(dsets['train'].imgs[:5])
print('dset_sizes: ', dset_sizes)

请添加图片描述
加载数据,设定循环次数:

loader_train = torch.utils.data.DataLoader(dsets['train'], batch_size=64, shuffle=True, num_workers=6)
loader_valid = torch.utils.data.DataLoader(dsets['valid'], batch_size=5, shuffle=False, num_workers=6)
'''
valid 数据一共有2000张图,每个batch是5张,因此,下面进行遍历一共会输出到 400
同时,把第一个 batch 保存到 inputs_try, labels_try,分别查看
'''
count = 1
for data in loader_valid:
    print(count, end='\n')
    if count == 1:
        inputs_try,labels_try = data
    count +=1

print(labels_try)
print(inputs_try.shape)

显示图片的小程序:

def imshow(inp, title=None):
#   Imshow for Tensor.
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = np.clip(std * inp + mean, 0,1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated

#显示 labels_try 的5张图片,即valid里第一个batch的5张图片:

out = torchvision.utils.make_grid(inputs_try)
imshow(out, title=[dset_classes[x] for x in labels_try])

第5周学习:ShuffleNet & EfficientNet & 迁移学习_第17张图片

step 3:创建VGG Model

直接使用预训练好的 VGG 模型,同时,为了展示 VGG 模型对本数据的预测结果,还下载了 ImageNet 1000 个类的 JSON 文件。对输入的5个图片利用VGG模型进行预测,同时,使用softmax对结果进行处理,随后展示了识别结果:

!wget https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json
model_vgg = models.vgg16(pretrained=True)

with open('./imagenet_class_index.json') as f:
    class_dict = json.load(f)
dic_imagenet = [class_dict[str(i)][1] for i in range(len(class_dict))]

inputs_try , labels_try = inputs_try.to(device), labels_try.to(device)
model_vgg = model_vgg.to(device)

outputs_try = model_vgg(inputs_try)

print(outputs_try)
print(outputs_try.shape)

'''
可以看到结果为5行,1000列的数据,每一列代表对每一种目标识别的结果。
但是我也可以观察到,结果非常奇葩,有负数,有正数,
为了将VGG网络输出的结果转化为对每一类的预测概率,我们把结果输入到 Softmax 函数
'''
m_softm = nn.Softmax(dim=1)
probs = m_softm(outputs_try)
vals_try,pred_try = torch.max(probs,dim=1)

print( 'prob sum: ', torch.sum(probs,1))
print( 'vals_try: ', vals_try)
print( 'pred_try: ', pred_try)

print([dic_imagenet[i] for i in pred_try.data])
imshow(torchvision.utils.make_grid(inputs_try.data.cpu()), 
       title=[dset_classes[x] for x in labels_try.data.cpu()])

第5周学习:ShuffleNet & EfficientNet & 迁移学习_第18张图片可以看到预测结果,五张猫猫都正确预测。

step 4:修改最后一层,冻结前面层的参数

VGG 模型如下图所示,网络由三种元素组成:
第5周学习:ShuffleNet & EfficientNet & 迁移学习_第19张图片
我们的目标是使用预训练好的模型,因此,需要把最后的 nn.Linear 层由1000类,替换为2类。为了在训练中冻结前面层的参数,需要设置 required_grad=False。这样,反向传播训练梯度时,前面层的权重就不会自动更新了。训练中,只会更新最后一层的参数。

print(model_vgg)

model_vgg_new = model_vgg;

for param in model_vgg_new.parameters():
    param.requires_grad = False
model_vgg_new.classifier._modules['6'] = nn.Linear(4096, 2)
model_vgg_new.classifier._modules['7'] = torch.nn.LogSoftmax(dim = 1)

model_vgg_new = model_vgg_new.to(device)

print(model_vgg_new.classifier)

第5周学习:ShuffleNet & EfficientNet & 迁移学习_第20张图片

step 5:训练并测试全连接层

创建损失函数和优化器 + 训练模型 + 测试模型

'''
第一步:创建损失函数和优化器

损失函数 NLLLoss() 的 输入 是一个对数概率向量和一个目标标签. 
它不会为我们计算对数概率,适合最后一层是log_softmax()的网络. 
'''
criterion = nn.NLLLoss()

# 学习率
lr = 0.001

# 随机梯度下降
optimizer_vgg = torch.optim.SGD(model_vgg_new.classifier[6].parameters(),lr = lr)

'''
第二步:训练模型
'''

def train_model(model,dataloader,size,epochs=1,optimizer=None):
    model.train()
    
    for epoch in range(epochs):
        running_loss = 0.0
        running_corrects = 0
        count = 0
        for inputs,classes in dataloader:
            inputs = inputs.to(device)
            classes = classes.to(device)
            outputs = model(inputs)
            loss = criterion(outputs,classes)           
            optimizer = optimizer
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            _,preds = torch.max(outputs.data,1)
            # statistics
            running_loss += loss.data.item()
            running_corrects += torch.sum(preds == classes.data)
            count += len(inputs)
            print('Training: No. ', count, ' process ... total: ', size)
        epoch_loss = running_loss / size
        epoch_acc = running_corrects.data.item() / size
        print('Loss: {:.4f} Acc: {:.4f}'.format(
                     epoch_loss, epoch_acc))
        
        
# 模型训练
train_model(model_vgg_new,loader_train,size=dset_sizes['train'], epochs=1, 
            optimizer=optimizer_vgg)  

第5周学习:ShuffleNet & EfficientNet & 迁移学习_第21张图片
训练集测试准确率79.5%

def test_model(model,dataloader,size):
    model.eval()
    predictions = np.zeros(size)
    all_classes = np.zeros(size)
    all_proba = np.zeros((size,2))
    i = 0
    running_loss = 0.0
    running_corrects = 0
    for inputs,classes in dataloader:
        inputs = inputs.to(device)
        classes = classes.to(device)
        outputs = model(inputs)
        loss = criterion(outputs,classes)           
        _,preds = torch.max(outputs.data,1)
        # statistics
        running_loss += loss.data.item()
        running_corrects += torch.sum(preds == classes.data)
        predictions[i:i+len(classes)] = preds.to('cpu').numpy()
        all_classes[i:i+len(classes)] = classes.to('cpu').numpy()
        all_proba[i:i+len(classes),:] = outputs.data.to('cpu').numpy()
        i += len(classes)
        print('Testing: No. ', i, ' process ... total: ', size)        
    epoch_loss = running_loss / size
    epoch_acc = running_corrects.data.item() / size
    print('Loss: {:.4f} Acc: {:.4f}'.format(
                     epoch_loss, epoch_acc))
    return predictions, all_proba, all_classes
  
predictions, all_proba, all_classes = test_model(model_vgg_new,loader_valid,size=dset_sizes['valid'])

第5周学习:ShuffleNet & EfficientNet & 迁移学习_第22张图片
测试集测试准确率95.65%

step 6:可视化模型预测结果(主观分析)

主观分析就是把预测的结果和相对应的测试图像输出出来看看,一般有四种方式:
(1)随机查看一些预测正确的图片
(2)随机查看一些预测错误的图片
(3)预测正确,同时具有较大的probability的图片
(4)预测错误,同时具有较大的probability的图片
(5)最不确定的图片,比如说预测概率接近0.5的图片

# 单次可视化显示的图片个数
n_view = 8
# 随即查看了预测正确的图片
correct = np.where(predictions==all_classes)[0]
from numpy.random import random, permutation
idx = permutation(correct)[:n_view]
print('random correct idx: ', idx)
loader_correct = torch.utils.data.DataLoader([dsets['valid'][x] for x in idx],
                  batch_size = n_view,shuffle=True)
for data in loader_correct:
    inputs_cor,labels_cor = data
# Make a grid from batch
out = torchvision.utils.make_grid(inputs_cor)
imshow(out, title=[l.item() for l in labels_cor])

# 类似的思路,可以显示错误分类的图片,这里不再重复

第5周学习:ShuffleNet & EfficientNet & 迁移学习_第23张图片

AI艺术鉴赏挑战赛 - 看画猜作者

季军代码:基于Resnext50,eff-b3训练图像尺寸448,512,600的模型,取得分最高的4组结果进行投票

data_count.py

划分数据集,30张以下的数据没有被划分验证集,class_cnt:label,idx,idx。with open() as 用于读写文件

import os
import pandas as pd
from sklearn.model_selection import train_test_split
import numpy as np


df = pd.read_csv('train.csv').values
print(df[:5])

class_cnt = {}


for idx, label in df:
    print(idx, label)
    if label not in class_cnt:
        class_cnt[label] = []
    class_cnt[label].append(idx)


for k, v in class_cnt.items():
    print(k, len(v))


big_x = []
big_y = []
small_x = []
small_y = []
for k, v in class_cnt.items():
    if len(v) < 30:
        small_x.extend(v)
        small_y.extend(np.ones(len(v), dtype=np.int16) * k)
    else:
        big_x.extend(v)
        big_y.extend(np.ones(len(v), dtype=np.int16) * k)

print(big_x)
print(big_y)

train_x, test_x, train_y, test_y = train_test_split(big_x, big_y, random_state=999, test_size=0.2)
train_x.extend(small_x)
train_y.extend(small_y)

with open('train.txt', 'w')as f:
    for fn, label in zip(train_x, train_y):
        f.write('./data/Art/data/train/{}.jpg,{}\n'.format(fn, label))

with open('val.txt', 'w')as f:
    for fn, label in zip(test_x, test_y):
        f.write('./data/Art/data/train/{}.jpg,{}\n'.format(fn, label))

dataload.py

torchvision是pytorch的一个图形库,它服务于PyTorch深度学习框架的,主要用来构建计算机视觉模型。torchvision.transforms主要是用于常见的一些图形变换。主要由以下四部分构成:
(1)torchvision.datasets: 一些加载数据的函数及常用的数据集接口
(2)torchvision.models: 包含常用的模型结构(含预训练模型),例如AlexNet、VGG、ResNet等
(3)torchvision.transforms: 常用的图片变换,例如裁剪、旋转等
(4)torchvision.utils: 其他的一些有用的方法
torchvision.transforms.Compose()的主要作用是串联多个图片变换的操作,进行数据增强

from torch.utils.data import dataset
from PIL import Image
from torchvision import transforms, models
import random
import numpy as np
import torch

size = 512
trans = {
        'train':
            transforms.Compose([
            #以0.5的概率水平翻转给定的PIL图像
                transforms.RandomHorizontalFlip(),
                # transforms.RandomVerticalFlip(),
                # transforms.ColorJitter(brightness=0.126, saturation=0.5),
                # transforms.RandomAffine(degrees=30, translate=(0.2, 0.2), fillcolor=0, scale=(0.8, 1.2), shear=None),
                transforms.Resize((int(size / 0.875), int(size / 0.875))),
                 #在一个随机的位置进行裁剪
                transforms.RandomCrop((size, size)),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
                #随机选择图像中的矩形区域并删除其像素
                transforms.RandomErasing(p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3))
            ]),
        'val':
            transforms.Compose([
                transforms.Resize((int(size / 0.875), int(size / 0.875))),
                transforms.CenterCrop((size, size)),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
            ])
        }


class Dataset(dataset.Dataset):
    def __init__(self, mode):
        assert mode in ['train', 'val']
        txt = './data/Art/data/%s.txt' % mode

        fpath = []
        labels = []
        with open(txt, 'r')as f:
            for i in f.readlines():
                fp, label = i.strip().split(',')
                fpath.append(fp)
                labels.append(int(label))

        self.fpath = fpath
        self.labels = labels
        self.mode = mode
        self.trans = trans[mode]
        
    def __getitem__(self, index):
        fp = self.fpath[index]
        label = self.labels[index]
        img = Image.open(fp).convert('RGB')
        if self.trans is not None:
            img = self.trans(img)

        return img, label

    def __len__(self):
        return len(self.labels)

train.py

导入数据进行训练,记录最好结果

from torch.utils.data import DataLoader
from ArtModel import BaseModel
import time
import numpy as np
import random
from torch.optim import lr_scheduler
from torch.backends import cudnn
import argparse
import os
import torch
import torch.nn as nn
from dataload import Dataset

#参数
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', default='resnext50', type=str)
parser.add_argument('--savepath', default='./Art/', type=str)
parser.add_argument('--loss', default='ce', type=str)
parser.add_argument('--num_classes', default=49, type=int)
parser.add_argument('--pool_type', default='avg', type=str)
parser.add_argument('--metric', default='linear', type=str)
parser.add_argument('--down', default=0, type=int)
parser.add_argument('--lr', default=0.01, type=float)
parser.add_argument('--weight_decay', default=5e-4, type=float)
parser.add_argument('--momentum', default=0.9, type=float)
parser.add_argument('--scheduler', default='cos', type=str)
parser.add_argument('--resume', default=None, type=str)
parser.add_argument('--lr_step', default=25, type=int)
parser.add_argument('--lr_gamma', default=0.1, type=float)
parser.add_argument('--total_epoch', default=60, type=int)
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--multi-gpus', default=0, type=int)
parser.add_argument('--gpu', default=0, type=int)
parser.add_argument('--seed', default=2020, type=int)
parser.add_argument('--pretrained', default=1, type=int)
parser.add_argument('--gray', default=0, type=int)

args = parser.parse_args()


def train():
    model.train()

    epoch_loss = 0
    correct = 0.
    total = 0.
    t1 = time.time()
    for idx, (data, labels) in enumerate(trainloader):
        data, labels = data.to(device), labels.long().to(device)

        out, se, feat_flat = model(data)
       
        loss = criterion(out, labels)
        optimizer.zero_grad()
        
        loss.backward()
        optimizer.step()

        epoch_loss += loss.item() * data.size(0)
        total += data.size(0)
        _, pred = torch.max(out, 1)
        correct += pred.eq(labels).sum().item()

    acc = correct / total
    loss = epoch_loss / total

    print(f'loss:{loss:.4f} acc@1:{acc:.4f} time:{time.time() - t1:.2f}s', end=' --> ')
    
    with open(os.path.join(savepath, 'log.txt'), 'a+')as f:
        f.write('loss:{:.4f}, acc:{:.4f} ->'.format(loss, acc))
    
    return {'loss': loss, 'acc': acc}


def test(epoch):
    model.eval()

    epoch_loss = 0
    correct = 0.
    total = 0.
    with torch.no_grad():
        for idx, (data, labels) in enumerate(valloader):
            data, labels = data.to(device), labels.long().to(device)
            
            out = model(data)

            loss = criterion(out, labels)

            epoch_loss += loss.item() * data.size(0)
            total += data.size(0)
            _, pred = torch.max(out, 1)
            correct += pred.eq(labels).sum().item()

        acc = correct / total
        loss = epoch_loss / total

        print(f'test loss:{loss:.4f} acc@1:{acc:.4f}', end=' ')

    global best_acc, best_epoch

    state = {
        'net': model.state_dict(),
        'acc': acc,
        'epoch': epoch
    }

    if acc > best_acc:
        best_acc = acc
        best_epoch = epoch

        torch.save(state, os.path.join(savepath, 'best.pth'))
        print('*')
    else:
        print()

    torch.save(state, os.path.join(savepath, 'last.pth'))


    with open(os.path.join(savepath, 'log.txt'), 'a+')as f:
        f.write('epoch:{}, loss:{:.4f}, acc:{:.4f}\n'.format(epoch, loss, acc))

    return {'loss': loss, 'acc': acc}


def plot(d, mode='train', best_acc_=None):
    import matplotlib.pyplot as plt
    plt.figure(figsize=(10, 4))
    plt.suptitle('%s_curve' % mode)
    plt.subplots_adjust(wspace=0.2, hspace=0.2)
    epochs = len(d['acc'])

    plt.subplot(1, 2, 1)
    plt.plot(np.arange(epochs), d['loss'], label='loss')
    plt.xlabel('epoch')
    plt.ylabel('loss')
    plt.legend(loc='upper left')

    plt.subplot(1, 2, 2)
    plt.plot(np.arange(epochs), d['acc'], label='acc')
    if best_acc_ is not None:
        plt.scatter(best_acc_[0], best_acc_[1], c='r')
    plt.xlabel('epoch')
    plt.ylabel('acc')
    plt.legend(loc='upper left')

    plt.savefig(os.path.join(savepath, '%s.jpg' % mode), bbox_inches='tight')
    plt.close()


if __name__ == '__main__':
    best_epoch = 0
    best_acc = 0.
    use_gpu = False

    if args.seed is not None:
        print('use random seed:', args.seed)
        torch.manual_seed(args.seed)
        torch.cuda.manual_seed(args.seed)
        torch.cuda.manual_seed_all(args.seed)
        np.random.seed(args.seed)
        random.seed(args.seed)
        cudnn.deterministic = False

    if torch.cuda.is_available():
        use_gpu = True
        cudnn.benchmark = True

    # loss交叉熵损失
    criterion = nn.CrossEntropyLoss()
    # dataloader
    trainset = Dataset(mode='train')
    valset = Dataset(mode='val')
    
    trainloader = DataLoader(dataset=trainset, batch_size=args.batch_size, shuffle=True, \
                             num_workers=args.num_workers, pin_memory=True, drop_last=True)
    
    valloader = DataLoader(dataset=valset, batch_size=128, shuffle=False, num_workers=args.num_workers, \
                           pin_memory=True)

    # model
    model = BaseModel(model_name=args.model_name, num_classes=args.num_classes, pretrained=args.pretrained, pool_type=args.pool_type, down=args.down, metric=args.metric)
    if args.resume:
        state = torch.load(args.resume)
        print('best_epoch:{}, best_acc:{}'.format(state['epoch'], state['acc']))
        model.load_state_dict(state['net'])

    if torch.cuda.device_count() > 1 and args.multi_gpus:
        print('use multi-gpus...')
        os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        torch.distributed.init_process_group(backend="nccl", init_method='tcp://localhost:23456', rank=0, world_size=1)
        model = model.to(device)
        model = nn.parallel.DistributedDataParallel(model)
    else:
        device = ('cuda:%d'%args.gpu if torch.cuda.is_available() else 'cpu')
        model = model.to(device)
    print('device:', device)

    # optim优化
    optimizer = torch.optim.SGD(
            [{'params': filter(lambda p: p.requires_grad, model.parameters()), 'lr': args.lr}],
            weight_decay=args.weight_decay, momentum=args.momentum)

    print('init_lr={}, weight_decay={}, momentum={}'.format(args.lr, args.weight_decay, args.momentum))

    if args.scheduler == 'step':
		#动态调整学习率
        scheduler = lr_scheduler.StepLR(optimizer, step_size=args.lr_step, gamma=args.lr_gamma, last_epoch=-1)
    elif args.scheduler == 'multi':
        scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[150, 225], gamma=args.lr_gamma, last_epoch=-1)
    elif args.scheduler == 'cos':
        warm_up_step = 10
        lambda_ = lambda epoch: (epoch + 1) / warm_up_step if epoch < warm_up_step else 0.5 * (
                    np.cos((epoch - warm_up_step) / (args.total_epoch - warm_up_step) * np.pi) + 1)
        scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lambda_)
    
    # savepath
    savepath = os.path.join(args.savepath, args.model_name+args.pool_type+args.metric+'_'+str(args.down))

    print('savepath:', savepath)

    if not os.path.exists(savepath):
        os.makedirs(savepath)

    with open(os.path.join(savepath, 'setting.txt'), 'w')as f:
        for k, v in vars(args).items():
            f.write('{}:{}\n'.format(k, v))

    f = open(os.path.join(savepath, 'log.txt'), 'w')
    f.close()

    total = args.total_epoch
    start = time.time()

    train_info = {'loss': [], 'acc': []}
    test_info = {'loss': [], 'acc': []}

    for epoch in range(total):
        print('epoch[{:>3}/{:>3}]'.format(epoch, total), end=' ')
        d_train = train()
        scheduler.step()
        d_test = test(epoch)

        for k in train_info.keys():
            train_info[k].append(d_train[k])
            test_info[k].append(d_test[k])

        plot(train_info, mode='train')
        plot(test_info, mode='test', best_acc_=[best_epoch, best_acc])

    end = time.time()
    print('total time:{}m{:.2f}s'.format((end - start) // 60, (end - start) % 60))
    print('best_epoch:', best_epoch)
    print('best_acc:', best_acc)
	#记录最好结果
    with open(os.path.join(savepath, 'log.txt'), 'a+')as f:
        f.write('# best_acc:{:.4f}, best_epoch:{}'.format(best_acc, best_epoch))

test.py

进行预测并记录预测结果

import torch
from ArtModel import BaseModel
import os
import pandas as pd
from PIL import Image
from torchvision import transforms
import numpy as np
import argparse


def get_setting(path):
    args = {}
    with open(os.path.join(path, 'setting.txt'), 'r')as f:
        for i in f.readlines():
            k, v = i.strip().split(':')
            args[k] = v
    return args


def load_pretrained_model(path, model, mode='best'):
    print('load pretrained model...')
    state = torch.load(os.path.join(path, '%s.pth' % mode))
    print('best_epoch:{}, best_acc:{}'.format(state['epoch'], state['acc']))
    model.load_state_dict(state['net'])


if __name__ == '__main__':
    mode = 'best'
    
    parser = argparse.ArgumentParser()
    parser.add_argument('--savepath', default='./Base224L2/eff-b3', type=str)
    parser.add_argument('--last', action='store_true')
    args = parser.parse_args()
    
    path = args.savepath
    if args.last:
        mode = 'last'
    
    args = get_setting(path)
    # print(args)

    # model
    model = BaseModel(model_name=args['model_name'], num_classes=int(args['num_classes']), \
        pretrained=int(args['pretrained']), pool_type=args['pool_type'], down=int(args['down']), metric=args['metric'])

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # device = torch.device('cpu')
    model = model.to(device)
    #加载预训练模型
    load_pretrained_model(path, model, mode=mode)

    size = 255
    trans = transforms.Compose([
        transforms.Resize((int(size / 0.875), int(size / 0.875))),
        transforms.RandomHorizontalFlip(),
        transforms.RandomCrop((size, size)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])

    submit = {'uuid': [], 'label': []}
    TTA_times = 7

    model.eval()
    with torch.no_grad():
        for i in range(0, 800):
            img_path = 'test/%d.jpg' % i
            raw_img = Image.open(img_path).convert('RGB')
            results = np.zeros(49)

            for j in range(TTA_times):
                img = trans(raw_img)
                img = img.unsqueeze(0).to(device)
                out = model(img)
                out = torch.softmax(out, dim=1)
                _, pred = torch.max(out.cpu(), dim=1)

                results[pred] += 1
            pred = np.argmax(results)
            print(i, ',', pred)
            submit['uuid'].append(i)
            submit['label'].append(pred)

    #保存结果
    df = pd.DataFrame(submit)
    df.to_csv(os.path.join(path, 'result.csv'), encoding='utf-8', index=False, header=False)

ArtModel.py

搭建分类模型:resnext50/eff-b3

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models
import math
import numpy as np
from efficientnet_pytorch import EfficientNet
import random


class SELayer(nn.Module):
    def __init__(self, channel, reduction=16):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel, bias=False),
            nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return y


class AdaptiveConcatPool2d(nn.Module):
    def __init__(self, sz=(1,1)):
        super().__init__()
        self.ap = nn.AdaptiveAvgPool2d(sz)
        self.mp = nn.AdaptiveMaxPool2d(sz)
        
    def forward(self, x):
        return torch.cat([self.mp(x), self.ap(x)], 1)


class GeneralizedMeanPooling(nn.Module):
    def __init__(self, norm=3, output_size=1, eps=1e-6):
        super().__init__()
        assert norm > 0
        self.p = float(norm)
        self.output_size = output_size
        self.eps = eps

    def forward(self, x):
        x = x.clamp(min=self.eps).pow(self.p)
        
        return torch.nn.functional.adaptive_avg_pool2d(x, self.output_size).pow(1. / self.p)

    def __repr__(self):
        return self.__class__.__name__ + '(' \
               + str(self.p) + ', ' \
               + 'output_size=' + str(self.output_size) + ')'


#模型框架
class BaseModel(nn.Module):
    def __init__(self, model_name, num_classes=2, pretrained=True, pool_type='max', down=True, metric='linear'):
        super().__init__()
        self.model_name = model_name
        
        #eff-b3/resnext50
        if model_name == 'eff-b3':
            backbone = EfficientNet.from_pretrained('efficientnet-b3')
            plane = 1536
        elif model_name == 'resnext50':
            backbone = nn.Sequential(*list(models.resnext50_32x4d(pretrained=pretrained).children())[:-2])
            plane = 2048
        else:
            backbone = None
            plane = None

        self.backbone = backbone
        
        #pool
        if pool_type == 'avg':
            self.pool = nn.AdaptiveAvgPool2d((1, 1))
        elif pool_type == 'cat':
            self.pool = AdaptiveConcatPool2d()
            down = 1
        elif pool_type == 'max':
            self.pool = nn.AdaptiveMaxPool2d((1, 1))
        elif pool_type == 'gem':
            self.pool = GeneralizedMeanPooling()
        else:
            self.pool = None
        
        if down:
            if pool_type == 'cat':
                self.down = nn.Sequential(
                    nn.Linear(plane * 2, plane),
                    nn.BatchNorm1d(plane),
                    nn.Dropout(0.2),
                    nn.ReLU(True)
                    )
            else:
                self.down = nn.Sequential(
                    nn.Linear(plane, plane),
                    nn.BatchNorm1d(plane),
                    nn.Dropout(0.2),
                    nn.ReLU(True)
                )
        else:
            self.down = nn.Identity()
        
        self.se = SELayer(plane)
        self.hidden = nn.Linear(plane, plane)
        self.relu = nn.ReLU(True)
        
        if metric == 'linear':
            self.metric = nn.Linear(plane, num_classes)
        elif metric == 'am':
            self.metric = AddMarginProduct(plane, num_classes)
        else:
            self.metric = None

    def forward(self, x):
        if self.model_name == 'eff-b3':
            feat = self.backbone.extract_features(x)
        else:
            feat = self.backbone(x)
        
        feat = self.pool(feat)
        se = self.se(feat).view(feat.size(0), -1)
        feat_flat = feat.view(feat.size(0), -1)
        feat_flat = self.relu(self.hidden(feat_flat) * se)

        out = self.metric(feat_flat)
        return out


if __name__ == '__main__':
    model = BaseModel(model_name='eff-b3').eval()
    x = torch.randn((1, 3, 224, 224))
    out = model(x)
    print(out.size())
    print(model)

vote.py

主干网络resnest200,输入448尺寸,在不同loss下取得5组最好效果,最后进行投票,得到最后分数。

import pandas as pd
import numpy as np


files = ['1.csv', '2.csv', '3.csv', '4.csv']
weights = [1, 1, 1, 1]

results = np.zeros((800, 49))
for file, w in zip(files, weights):
    print(w)
    df = pd.read_csv(file, header=None).values
    for x, y in df:
        # print(x, y)
        results[x, y] += w
        # break

print(results[0])

submit = {
    'name': np.arange(800).tolist(),
    'pred': np.argmax(results, axis=1).tolist()
    }

for k, v in submit.items():
    print(k, v)

df = pd.DataFrame(submit)
df.to_csv('vote.csv', header=False, index=False)

你可能感兴趣的:(学习,迁移学习,深度学习)