“一个模型三个特征”理论讲解
什么样的问题适合用动态规划来解决呢?换句话说,动态规划能解决的问题有什么规律可循呢?实际上,动态规划作为一个非常成熟的算法思想,很多人对此已经做了非常全面的总结。我把这部分理论总结为“一个模型三个特征”。
首先,我们来看,什么是“一个模型”?它指的是动态规划适合解决的问题的模型。我把这个模型定义为“多阶段决策最优解模型”。下面我具体来给你讲讲。
我们一般是用动态规划来解决最优问题。而解决问题的过程,需要经历多个决策阶段。每个决策阶段都对应着一组状态。然后我们寻找一组决策序列,经过这组决策序列,能够产生最终期望求解的最优值。
现在,我们再来看,什么是“三个特征”?它们分别是最优子结构、无后效性和重复子问题。这三个概念比较抽象,我来逐一详细解释一下。
1. 最优子结构
最优子结构指的是,问题的最优解包含子问题的最优解。反过来说就是,我们可以通过子问题的最优解,推导出问题的最优解。如果我们把最优子结构,对应到我们前面定义的动态规划问题模型上,那我们也可以理解为,后面阶段的状态可以通过前面阶段的状态推导出来。
2. 无后效性
无后效性有两层含义,第一层含义是,在推导后面阶段的状态的时候,我们只关心前面阶段的状态值,不关心这个状态是怎么一步一步推导出来的。第二层含义是,某阶段状态一旦确定,就不受之后阶段的决策影响。无后效性是一个非常“宽松”的要求。只要满足前面提到的动态规划问题模型,其实基本上都会满足无后效性。
3. 重复子问题
这个概念比较好理解。前面一节,我已经多次提过。如果用一句话概括一下,那就是,不同的决策序列,到达某个相同的阶段时,可能会产生重复的状态。
“一个模型三个特征”实例剖析
假设我们有一个 n 乘以 n 的矩阵 w[n][n]。矩阵存储的都是正整数。棋子起始位置在左上角,终止位置在右下角。我们将棋子从左上角移动到右下角。每次只能向右或者向下移动一位。从左上角到右下角,会有很多不同的路径可以走。我们把每条路径经过的数字加起来看作路径的长度。那从左上角移动到右下角的最短路径长度是多少呢?
我们先看看,这个问题是否符合“一个模型”?
从 (0, 0) 走到 (n-1, n-1),总共要走 2(n-1) 步,也就对应着 2(n-1) 个阶段。每个阶段都有向右走或者向下走两种决策,并且每个阶段都会对应一个状态集合。
我们把状态定义为 min_dist(i, j),其中 i 表示行,j 表示列。min_dist 表达式的值表示从 (0, 0) 到达 (i, j) 的最短路径长度。所以,这个问题是一个多阶段决策最优解问题,符合动态规划的模型。
我们再来看,这个问题是否符合“三个特征”?
我们可以用回溯算法来解决这个问题。如果你自己写一下代码,画一下递归树,就会发现,递归树中有重复的节点。重复的节点表示,从左上角到节点对应的位置,有多种路线,这也能说明这个问题中存在重复子问题。
如果我们走到 (i, j) 这个位置,我们只能通过 (i-1, j),(i, j-1) 这两个位置移动过来,也就是说,我们想要计算 (i, j) 位置对应的状态,只需要关心 (i-1, j),(i, j-1) 两个位置对应的状态,并不关心棋子是通过什么样的路线到达这两个位置的。而且,我们仅仅允许往下和往右移动,不允许后退,所以,前面阶段的状态确定之后,不会被后面阶段的决策所改变,所以,这个问题符合“无后效性”这一特征。
刚刚定义状态的时候,我们把从起始位置 (0, 0) 到 (i, j) 的最小路径,记作 min_dist(i, j)。因为我们只能往右或往下移动,所以,我们只有可能从 (i, j-1) 或者 (i-1, j) 两个位置到达 (i, j)。也就是说,到达 (i, j) 的最短路径要么经过 (i, j-1),要么经过 (i-1, j),而且到达 (i, j) 的最短路径肯定包含到达这两个位置的最短路径之一。换句话说就是,min_dist(i, j) 可以通过 min_dist(i, j-1) 和 min_dist(i-1, j) 两个状态推导出来。这就说明,这个问题符合“最优子结构”。
min_dist(i, j) = w[i][j] + min(min_dist(i, j-1), min_dist(i-1, j))
两种动态规划解题思路总结
刚刚我讲了,如何鉴别一个问题是否可以用动态规划来解决。现在,我再总结一下,动态规划解题的一般思路,让你面对动态规划问题的时候,能够有章可循,不至于束手无策。
我个人觉得,解决动态规划问题,一般有两种思路。我把它们分别叫作,状态转移表法和状态转移方程法。
1. 状态转移表法
一般能用动态规划解决的问题,都可以使用回溯算法的暴力搜索解决。所以,当我们拿到问题的时候,我们可以先用简单的回溯算法解决,然后定义状态,每个状态表示一个节点,然后对应画出递归树。从递归树中,我们很容易可以看出来,是否存在重复子问题,以及重复子问题是如何产生的。以此来寻找规律,看是否能用动态规划解决。
找到重复子问题之后,接下来,我们有两种处理思路,第一种是直接用回溯加“备忘录”的方法,来避免重复子问题。从执行效率上来讲,这跟动态规划的解决思路没有差别。第二种是使用动态规划的解决方法,状态转移表法。第一种思路,我就不讲了,你可以看看上一节的两个例子。我们重点来看状态转移表法是如何工作的。
找到重复子问题之后,接下来,我们有两种处理思路,第一种是直接用回溯加“备忘录”的方法,来避免重复子问题。从执行效率上来讲,这跟动态规划的解决思路没有差别。第二种是使用动态规划的解决方法,状态转移表法。第一种思路,我就不讲了,你可以看看上一节的两个例子。我们重点来看状态转移表法是如何工作的。
我们先画出一个状态表。状态表一般都是二维的,所以你可以把它想象成二维数组。其中,每个状态包含三个变量,行、列、数组值。我们根据决策的先后过程,从前往后,根据递推关系,分阶段填充状态表中的每个状态。最后,我们将这个递推填表的过程,翻译成代码,就是动态规划代码了。
尽管大部分状态表都是二维的,但是如果问题的状态比较复杂,需要很多变量来表示,那对应的状态表可能就是高维的,比如三维、四维。那这个时候,我们就不适合用状态转移表法来解决了。一方面是因为高维状态转移表不好画图表示,另一方面是因为人脑确实很不擅长思考高维的东西。
现在,我们来看一下,如何套用这个状态转移表法,来解决之前那个矩阵最短路径的问题?
从起点到终点,我们有很多种不同的走法。我们可以穷举所有走法,然后对比找出一个最短走法。不过如何才能无重复又不遗漏地穷举出所有走法呢?我们可以用回溯算法这个比较有规律的穷举算法。
public int minDistDP(int[][] matrix, int n) {
int[][] states = new int[n][n];
int sum = 0;
for (int j = 0; j < n; ++j) { // 初始化 states 的第一行数据
sum += matrix[0][j];
states[0][j] = sum;
}
sum = 0;
for (int i = 0; i < n; ++i) { // 初始化 states 的第一列数据
sum += matrix[i][0];
states[i][0] = sum;
}
for (int i = 1; i < n; ++i) {
for (int j = 1; j < n; ++j) {
states[i][j] =
matrix[i][j] + Math.min(states[i][j-1], states[i-1][j]);
}
}
return states[n-1]
2. 状态转移方程法
状态转移方程法有点类似递归的解题思路。我们需要分析,某个问题如何通过子问题来递归求解,也就是所谓的最优子结构。根据最优子结构,写出递归公式,也就是所谓的状态转移方程。有了状态转移方程,代码实现就非常简单了。一般情况下,我们有两种代码实现方法,一种是递归加“备忘录”,另一种是迭代递推。
我们还是拿刚才的例子来举例。最优子结构前面已经分析过了,你可以回过头去再看下。为了方便你查看,我把状态转移方程放到这里。
min_dist(i, j) = w[i][j] + min(min_dist(i, j-1), min_dist(i-1, j))
这里我强调一下,状态转移方程是解决动态规划的关键。如果我们能写出状态转移方程,那动态规划问题基本上就解决一大半了,而翻译成代码非常简单。但是很多动态规划问题的状态本身就不好定义,状态转移方程也就更不好想到。
下面我用递归加“备忘录”的方式,将状态转移方程翻译成来代码,你可以看看。对于另一种实现方式,跟状态转移表法的代码实现是一样的,只是思路不同。
状态转移表法解题思路大致可以概括为,回溯算法实现 - 定义状态 - 画递归树 - 找重复子问题 - 画状态转移表 - 根据递推关系填表 - 将填表过程翻译成代码。状态转移方程法的大致思路可以概括为,找最优子结构 - 写状态转移方程 - 将状态转移方程翻译成代码。