算法思路:
(1)创建map[int]int,k为数值中元素,v表示出现的次数,用map去重;
(2)维护一个K个节点的最小堆,堆中存储k,v;
(3)遍历map取出k,v,若v大于堆中最小v,则替换堆中最小的k,v;
(4)之后取出堆中的k,则为前m个高频数字
最小二叉堆的实现:
type minHeap struct {
size int
nums [][2]int
}
func NewMinHeapTree() *minHeap {
return &minHeap{}
}
func Parent(i int) int {
if i == 0 {
return 0
}
return (i - 1) / 2
}
func LeftChild(i int) int {
return 2*i + 1
}
func (heap *minHeap) IsEmpty() bool {
return heap.size == 0
}
func (heap *minHeap) GetSize() int {
return heap.size
}
func (heap *minHeap) GetMinVal() ([2]int, error) {
if heap.IsEmpty() {
return [2]int{}, errors.New(
"failed to geiMinVal,minHeap is empty.")
}
return heap.nums[0], nil
}
func siftDown(heap *minHeap, parI int) {
var minI int
for {
leftI := LeftChild(parI)
switch {
case leftI+1 > heap.size:
return
case leftI+2 > heap.size:
if heap.nums[parI][1] > heap.nums[leftI][1] {
heap.nums[parI], heap.nums[leftI] = heap.nums[leftI],
heap.nums[parI]
}
return
case heap.nums[leftI][1] <= heap.nums[leftI+1][1]:
minI = leftI
case heap.nums[leftI][1] > heap.nums[leftI+1][1]:
minI = leftI + 1
}
if heap.nums[parI][1] > heap.nums[minI][1] {
heap.nums[parI], heap.nums[minI] = heap.nums[minI],
heap.nums[parI]
}
parI = minI
}
}
func (heap *minHeap) SiftUp(key, val int) {
heap.nums = append(heap.nums, [2]int{key, val})
parI := Parent(heap.size)
childI := heap.size
for heap.nums[parI][1] > heap.nums[childI][1] {
heap.nums[parI], heap.nums[childI] = heap.nums[childI],
heap.nums[parI]
childI = parI
parI = Parent(parI)
}
heap.size++
}
func (heap *minHeap) SiftDown() ([2]int, error) {
minVal, err := heap.GetMinVal()
if err != nil {
return minVal, err
}
heap.size--
heap.nums[0], heap.nums[heap.size] = heap.nums[heap.size], [2]int{}
siftDown(heap, 0)
return minVal, nil
}
func (heap *minHeap) Replace(key, val int) ([2]int, error) {
minVal, err := heap.GetMinVal()
if err != nil {
return minVal, err
}
heap.nums[0] = [2]int{key, val}
siftDown(heap, 0)
return minVal, nil
}
前m个高频数字的实现:
func topKFrequent(nums []int, k int) []int {
h := NewMinHeapTree()
m := make(map[int]int)
for _, v := range nums {
m[v]++
}
count := 0
minVal := [2]int{}
minV := 0
for v1, v2 := range m {
if count == k {
if v2 > minV {
h.Replace(v1, v2)
minVal, _ = h.GetMinVal()
minV = minVal[1]
}
continue
}
h.SiftUp(v1, v2)
count++
if count == k {
minVal, _ = h.GetMinVal()
minV = minVal[1]
}
}
buf := []int{}
for i := 0; i < k; i++ {
v, _ := h.SiftDown()
buf = append(buf, v[0])
}
return buf
}
通过,逻辑正确。
解决方法2,不用最小堆,速度或许更快点,参考leetcode上的最优解:
// 代码如下
func topKFrequent(nums []int, k int) []int {
arr := make([]int, 0)
if len(nums) == 0 {
return arr
}
m := make(map[int]int)
maxCount := 0
for _, v := range nums {
m[v] += 1
if m[v] > maxCount {
maxCount = m[v]
}
}
tmp := make([][]int, maxCount+1)
for k, v := range m {
tmp[v] = append(tmp[v], k)
}
for i := maxCount; i >= 0; i-- {
if len(tmp[i]) == 0 {
continue
}
for _, v := range tmp[i] {
arr = append(arr, v)
if len(arr) == k {
goto BREAK
}
}
}
BREAK:
return arr
}
相关问题:
求n个数字中前m个最大值:https://www.jianshu.com/p/29493ea46f7b
有bug欢迎指出