iOS底层原理 - Category

Category的底层结构

定义在objc-runtime-new.h中

struct category_t {
    const char *name;
    classref_t cls;
    struct method_list_t *instanceMethods;
    struct method_list_t *classMethods;
    struct protocol_list_t *protocols;
    struct property_list_t *instanceProperties;
    // Fields below this point are not always present on disk.
    struct property_list_t *_classProperties;

    method_list_t *methodsForMeta(bool isMeta) {
        if (isMeta) return classMethods;
        else return instanceMethods;
    }

    property_list_t *propertiesForMeta(bool isMeta, struct header_info *hi);
};

Category的加载处理过程
1.通过Runtime加载某个类的所有Category数据

2.把所有Category的方法、属性、协议数据,合并到一个大数组中
后面参与编译的Category数据,会在数组的前面

3.将合并后的分类数据(方法、属性、协议),插入到类原来数据的前面

// Attach method lists and properties and protocols from categories to a class.
// Assumes the categories in cats are all loaded and sorted by load order, 
// oldest categories first.
static void 
attachCategories(Class cls, category_list *cats, bool flush_caches)
{
    if (!cats) return;
    if (PrintReplacedMethods) printReplacements(cls, cats);

    bool isMeta = cls->isMetaClass();

    // fixme rearrange to remove these intermediate allocations
    method_list_t **mlists = (method_list_t **)
        malloc(cats->count * sizeof(*mlists));
    property_list_t **proplists = (property_list_t **)
        malloc(cats->count * sizeof(*proplists));
    protocol_list_t **protolists = (protocol_list_t **)
        malloc(cats->count * sizeof(*protolists));

    // Count backwards through cats to get newest categories first
    int mcount = 0;
    int propcount = 0;
    int protocount = 0;
    int i = cats->count;
    bool fromBundle = NO;
    while (i--) {
        auto& entry = cats->list[I];

        method_list_t *mlist = entry.cat->methodsForMeta(isMeta);
        if (mlist) {
            mlists[mcount++] = mlist;
            fromBundle |= entry.hi->isBundle();
        }

        property_list_t *proplist = 
            entry.cat->propertiesForMeta(isMeta, entry.hi);
        if (proplist) {
            proplists[propcount++] = proplist;
        }

        protocol_list_t *protolist = entry.cat->protocols;
        if (protolist) {
            protolists[protocount++] = protolist;
        }
    }
  //得到类对象里面的数据
    auto rw = cls->data();
//将所有分类的对象方法,附加到类对象的方法列表中
    prepareMethodLists(cls, mlists, mcount, NO, fromBundle);
    rw->methods.attachLists(mlists, mcount);
    free(mlists);
    if (flush_caches  &&  mcount > 0) flushCaches(cls);

//将所有分类的属性,附加到类对象的属性列表中
    rw->properties.attachLists(proplists, propcount);
    free(proplists);

//将所有分类的协议,附加到类对象的协议列表中
    rw->protocols.attachLists(protolists, protocount);
    free(protolists);
}


 void attachLists(List* const * addedLists, uint32_t addedCount) {
        if (addedCount == 0) return;

        if (hasArray()) {
            // many lists -> many lists
            uint32_t oldCount = array()->count;
            uint32_t newCount = oldCount + addedCount;
            setArray((array_t *)realloc(array(), array_t::byteSize(newCount)));
            array()->count = newCount;
          //array()->lists 原来的方法列表
            memmove(array()->lists + addedCount, array()->lists, 
                    oldCount * sizeof(array()->lists[0]));
            memcpy(array()->lists, addedLists, 
                   addedCount * sizeof(array()->lists[0]));
        }
        else if (!list  &&  addedCount == 1) {
            // 0 lists -> 1 list
            list = addedLists[0];
        } 
        else {
            // 1 list -> many lists
            List* oldList = list;
            uint32_t oldCount = oldList ? 1 : 0;
            uint32_t newCount = oldCount + addedCount;
            setArray((array_t *)malloc(array_t::byteSize(newCount)));
            array()->count = newCount;
            if (oldList) array()->lists[addedCount] = oldList;
            memcpy(array()->lists, addedLists, 
                   addedCount * sizeof(array()->lists[0]));
        }
    }

+load方法

+load方法会在runtime加载类、分类时调用

每个类、分类的+load,在程序运行过程中只调用一次

调用顺序
先调用类的+load
按照编译先后顺序调用(先编译,先调用)
调用子类的+load之前会先调用父类的+load

再调用分类的+load
按照编译先后顺序调用(先编译,先调用)

objc4源码解读过程:objc-os.mm
_objc_init

load_images

prepare_load_methods
schedule_class_load
add_class_to_loadable_list
add_category_to_loadable_list

call_load_methods
call_class_loads
call_category_loads
(*load_method)(cls, SEL_load)

+load方法是根据方法地址直接调用,并不是经过objc_msgSend函数调用

+initialize方法

+initialize方法会在类第一次接收到消息时调用

调用顺序
先调用父类的+initialize,再调用子类的+initialize
(先初始化父类,再初始化子类,每个类只会初始化1次)

objc4源码解读过程
objc-msg-arm64.s
objc_msgSend

objc-runtime-new.mm
class_getInstanceMethod
lookUpImpOrNil
lookUpImpOrForward
_class_initialize
callInitialize
objc_msgSend(cls, SEL_initialize)

+initialize和+load的很大区别是,+initialize是通过objc_msgSend进行调用的,所以有以下特点
如果子类没有实现+initialize,会调用父类的+initialize(所以父类的+initialize可能会被调用多次)
如果分类实现了+initialize,就覆盖类本身的+initialize调用

思考:如何实现给分类“添加成员变量”?

默认情况下,因为分类底层结构的限制,不能添加成员变量到分类中。但可以通过关联对象来间接实现

关联对象提供了以下API
添加关联对象
void objc_setAssociatedObject(id object, const void * key,
id value, objc_AssociationPolicy policy)

获得关联对象
id objc_getAssociatedObject(id object, const void * key)

移除所有的关联对象
void objc_removeAssociatedObjects(id object)

void _object_set_associative_reference(id object, void *key, id value, uintptr_t policy) {
    // This code used to work when nil was passed for object and key. Some code
    // probably relies on that to not crash. Check and handle it explicitly.
    // rdar://problem/44094390
    if (!object && !value) return;
    
    assert(object);
    
    if (object->getIsa()->forbidsAssociatedObjects())
        _objc_fatal("objc_setAssociatedObject called on instance (%p) of class %s which does not allow associated objects", object, object_getClassName(object));
    
    // retain the new value (if any) outside the lock.
    ObjcAssociation old_association(0, nil);
    id new_value = value ? acquireValue(value, policy) : nil;
    {
        AssociationsManager manager;
        AssociationsHashMap &associations(manager.associations());
        disguised_ptr_t disguised_object = DISGUISE(object);
        if (new_value) {
            // break any existing association.
            AssociationsHashMap::iterator i = associations.find(disguised_object);
            if (i != associations.end()) {
                // secondary table exists
                ObjectAssociationMap *refs = i->second;
                ObjectAssociationMap::iterator j = refs->find(key);
                if (j != refs->end()) {
                    old_association = j->second;
                    j->second = ObjcAssociation(policy, new_value);
                } else {
                    (*refs)[key] = ObjcAssociation(policy, new_value);
                }
            } else {
                // create the new association (first time).
                ObjectAssociationMap *refs = new ObjectAssociationMap;
                associations[disguised_object] = refs;
                (*refs)[key] = ObjcAssociation(policy, new_value);
                object->setHasAssociatedObjects();
            }
        } else {
            // setting the association to nil breaks the association.
            AssociationsHashMap::iterator i = associations.find(disguised_object);
            if (i !=  associations.end()) {
                ObjectAssociationMap *refs = i->second;
                ObjectAssociationMap::iterator j = refs->find(key);
                if (j != refs->end()) {
                    old_association = j->second;
                    refs->erase(j);
                }
            }
        }
    }
    // release the old value (outside of the lock).
    if (old_association.hasValue()) ReleaseValue()(old_association);
}

通过上面的源码我们可以总结一下:
实现关联对象技术的核心对象有
AssociationsManager
AssociationsHashMap
ObjectAssociationMap
ObjcAssociation

objc4源码解读:objc-references.mm


image.png

关联对象的原理

image.png

void objc_setAssociatedObject(id object, const void * key,
id value,
objc_AssociationPolicy policy)
关联对象并不是存储在被关联对象本身内存中
关联对象存储在全局的统一的一个AssociationsManager中

你可能感兴趣的:(iOS底层原理 - Category)