深度学习_Learning Rate Scheduling

我们在训练模型时学习率的设置非常重要。

  • 学习率的大小很重要。如果它太大,优化就会发散,如果它太小,训练时间太长,否则我们最终会得到次优的结果。
  • 其次,衰变率同样重要。如果学习率仍然很大,我们可能会简单地在最小值附近反弹,从而无法达到最优

我们可以通过学习率时间表(Learning Rate Scheduling)有效地管理准确性

一、基于FashionMNIST任务的学习率时间表实践准备

构建简单网络

def net_fn():
    model = nn.Sequential(
        nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.ReLU(),
        nn.MaxPool2d(kernel_size=2, stride=2),
        nn.Conv2d(6, 16, kernel_size=5), nn.ReLU(),
        nn.MaxPool2d(kernel_size=2, stride=2),
        nn.Flatten(),
        nn.Linear(16 * 5 * 5, 120), nn.ReLU(),
        nn.Linear(120, 84), nn.ReLU(),
        nn.Linear(84, 10))
    return model

模型结构如下(左-netron
深度学习_Learning Rate Scheduling_第1张图片
简单的训练框架
全部脚本可以查看笔者的github: LearningRateScheduling.ipynb

def train(model, train_iter, test_iter, config, scheduler=None):
    device = config.device
    loss = config.loss
    opt = config.opt
    num_epochs = config.num_epochs
    model.to(device)
    animator = Animator(xlabel='epoch', xlim=[0, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    
    ep_total_steps = len(train_iter)
    for ep in range(num_epochs):
        tq_bar = tqdm(enumerate(train_iter))
        tq_bar.set_description(f'[ Epoch {ep+1}/{num_epochs} ]')
        # train_loss, train_acc, num_examples
        metric = Accumulator(3)
        for idx, (X, y) in tq_bar:
            final_flag = (ep_total_steps == idx + 1) & (num_epochs == ep + 1)
            model.train()
            opt.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = model(X)
            l = loss(y_hat, y)
            l.backward()
            opt.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], accuracy(y_hat, y), X.shape[0])
            train_loss = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            tq_bar.set_postfix({
                "loss" : f"{train_loss:.3f}",
                "acc" : f"{train_acc:.3f}",
            })
            if (idx + 1) % 50 == 0:
                animator.add(ep + idx / len(train_iter), (train_loss, train_acc, None), clear_flag=not final_flag)

        test_acc = evaluate_accuracy_gpu(model, test_iter)
        animator.add(ep+1, (None, None, test_acc), clear_flag=not final_flag)
        if scheduler:
            if scheduler.__module__ == lr_scheduler.__name__:
                # 使用 PyTorch In-Built scheduler
                scheduler.step()
            else:
                # 使用自定义 scheduler
                for param_group in opt.param_groups:
                    param_group['lr'] = scheduler(ep) 

    print(f'train loss {train_loss:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')
    plt.show()

二、基于FashionMNIST任务的学习率时间表实践

2.1 无learning rate Scheduler 训练

def test(train_iter, test_iter, scheduler=None):
    net = net_fn()
    cfg = Namespace(
        device=try_gpu(),
        loss=nn.CrossEntropyLoss(),
        lr=0.3, 
        num_epochs=10,
        opt=torch.optim.SGD(net.parameters(), lr=0.3)
    )
    train(net, train_iter, test_iter, cfg, scheduler)

batch_size = 256
train_iter, test_iter = load_data_fashion_mnist(batch_size=batch_size)
test(train_iter, test_iter)

深度学习_Learning Rate Scheduling_第2张图片

2.2 Square Root Scheduler训练

更新方式为
η = η ∗ n u m _ u p d a t e + 1 \eta =\eta *\sqrt{num\_update + 1} η=ηnum_update+1
本次试验是每一个epoch更新一次

def get_lr(scheduler):
    lr = scheduler.get_last_lr()[0]
    scheduler.optimizer.step()
    scheduler.step()
    return lr

def plot_scheduler(scheduler, num_epochs=10):
    s = scheduler.__class__.__name__
    if scheduler.__module__ == lr_scheduler.__name__:
        print('pytorch build lr_scheduler')
        plot_y = [get_lr(scheduler) for _ in range(num_epochs)]
    else:
        plot_y = [scheduler(t) for t in range(num_epochs)]

    plt.title(f'train with learning rate scheduler: {s}')
    plt.plot(torch.arange(num_epochs), plot_y)
    plt.xlabel('num_epochs')
    plt.ylabel('learning_rate')
    plt.show()


class SquareRootScheduler:
    """
    使用均方根scheduler
    每一个epoch更新一次
    """
    def __init__(self, lr=0.1):
        self.lr = lr

    def __call__(self, num_update):
        return self.lr * pow(num_update + 1.0, -0.5)

scheduler = SquareRootScheduler(lr=0.1)
plot_scheduler(scheduler)

深度学习_Learning Rate Scheduling_第3张图片
训练

test(train_iter, test_iter, scheduler)

从下图中可以看出:曲线比以前更平滑了。其次,过度拟合较少。
深度学习_Learning Rate Scheduling_第4张图片

2.3 FactorScheduler训练

学习率更新方式: η t + 1 ← m a x ( η m i n , η t ⋅ α ) \eta_{t+1} \leftarrow \mathop{\mathrm{max}}(\eta_{\mathrm{min}}, \eta_t \cdot \alpha) ηt+1max(ηmin,ηtα)

class FactorScheduler:
    def __init__(self, factor=1, stop_factor_lr=1e-7, base_lr=0.1):
        self.factor = factor
        self.stop_factor_lr = stop_factor_lr
        self.base_lr = base_lr

    def __call__(self, num_update):
        self.base_lr = max(self.stop_factor_lr, self.base_lr * self.factor)
        return self.base_lr

scheduler = FactorScheduler(factor=0.8, stop_factor_lr=1e-2, base_lr=0.6)
plot_scheduler(scheduler)

深度学习_Learning Rate Scheduling_第5张图片
训练

test(train_iter, test_iter, scheduler)

深度学习_Learning Rate Scheduling_第6张图片

2.4 Multi Factor Scheduler训练

保持学习率分段恒定,并每隔一段时间将其降低一个给定的量。也就是说,给定一组何时降低速率的时间比如$ (s = {3, 8} )$
d e c r e a s e ( η t + 1 ← η t ⋅ α )    t ∈ s decrease (\eta_{t+1} \leftarrow \eta_t \cdot \alpha) \ \ t \in s decrease(ηt+1ηtα)  ts

net = net_fn()
trainer = torch.optim.SGD(net.parameters(), lr=0.5)
scheduler = lr_scheduler.MultiStepLR(trainer, milestones=[3, 8], gamma=0.5)

plot_scheduler(scheduler)

深度学习_Learning Rate Scheduling_第7张图片
训练

test(train_iter, test_iter, scheduler)

深度学习_Learning Rate Scheduling_第8张图片

2.5 Cosine Scheduler训练

Loshchilov和Hutter提出了一个相当令人困惑的启发式方法。它依赖于这样一种观察,即我们可能不想在一开始就大幅降低学习率,此外,我们可能希望在最后使用非常小的学习率来“完善”解决方案。这导致了一个类似余弦的时间表,具有以下函数形式,用于范围内的学习率 t ∈ [ 0 , T ] t \in [0, T] t[0,T]

η t = η T + η 0 − η T 2 ( 1 + cos ⁡ ( π t T ) ) \eta_t = \eta_T + \frac{\eta_0 - \eta_T}{2} \left(1 + \cos(\frac{\pi t}{T})\right) ηt=ηT+2η0ηT(1+cos(Tπt))

注:

  • η T \eta_T ηT: 为最终的学习率
  • η 0 \eta_0 η0: 为最开始的学习率
class CosineScheduler:
    def __init__(self, max_update, base_lr=0.01, final_lr=0,
               warmup_steps=0, warmup_begin_lr=0):
        self.base_lr_orig = base_lr
        self.max_update = max_update
        self.final_lr = final_lr
        self.warmup_steps = warmup_steps
        self.warmup_begin_lr = warmup_begin_lr
        self.max_steps = self.max_update - self.warmup_steps

    def get_warmup_lr(self, step):
        increase = (self.base_lr_orig - self.warmup_begin_lr) \
                       * float(step) / float(self.warmup_steps)
        return self.warmup_begin_lr + increase

    def __call__(self, step):
        if step < self.warmup_steps:
            return self.get_warmup_lr(step)
        if step <= self.max_update:
            self.base_lr = self.final_lr + (
                self.base_lr_orig - self.final_lr) * (1 + math.cos(
                math.pi * (step - self.warmup_steps) / self.max_steps)) / 2
        return self.base_lr

scheduler = CosineScheduler(max_update=10, base_lr=0.2, final_lr=0.02)
plot_scheduler(scheduler)

深度学习_Learning Rate Scheduling_第9张图片
训练

test(train_iter, test_iter, scheduler)

深度学习_Learning Rate Scheduling_第10张图片

2.6 Warmup

在某些情况下,初始化参数不足以保证良好的解决方案。对于一些先进的网络设计来说,这尤其是一个问题(Transformer的训练常用该方法),可能会导致不稳定的优化问题。
我们可以通过选择一个足够小的学习率来解决这个问题,以防止一开始就出现分歧。不幸的是,这意味着进展缓慢。相反,学习率高最初会导致差异。

对于这种困境,一个相当简单的解决方案是使用一个预热期,在此期间学习速率增加到其初始最大值,并冷却速率直到优化过程结束。为了简单起见,通常使用线性增加来实现这一目的。

scheduler = CosineScheduler(max_update=10, warmup_steps=3, base_lr=0.2, final_lr=0.02)
plot_scheduler(scheduler, 15)

深度学习_Learning Rate Scheduling_第11张图片
训练

test(train_iter, test_iter, scheduler)

深度学习_Learning Rate Scheduling_第12张图片

小结

从上述的5个策略上来看,一般情况我们用 Cosine Scheduler 或者线性衰减就能得到较好的结果。不过对于较大的模型,需要用warmup 并且需要特意去设计,比如NoamOpt等。

你可能感兴趣的:(深度学习,深度学习,机器学习,人工智能)