d2l 里面GRU与Lstm实现

此二者的本质都是对rnn进行改良:关注当前多还是关注之前多。

在此详细讲一下。

目录

1.GRU门循环控制单元

1.1理论:

 1.2初始化参数

1.3定义网络

1.4训练命令行

1.5简洁实现

2.Lstm长短期记忆网络

2.1理论

 2.2加载参数

2.3定义lstm计算

2.4定义模型:

2.5训练命令行

3.强调


1.GRU门循环控制单元

1.1理论:

其参数多了两个,本质都是对H的计算进行了改进。

d2l 里面GRU与Lstm实现_第1张图片

 d2l 里面GRU与Lstm实现_第2张图片

 1.2初始化参数

  与从零开始RNN的初始化参数类似,首先指定输入输出维度=len(vocab)
  构建一个均值=0,std=0.01的初始化tensor,传入的是尺寸
  将更新门、重置门、候选隐状态的参数都是3个,构造初始化辅助函数three,直接赋值即可得到相应的初始化参数(初始化需要的参数形式相同,故一样)
  传入的X尺寸为(bs,V),系数W的尺寸为(V,h)/(h,V),H的尺寸为(bs,h);与X或H相乘得到(bs,V),这其实就是Y的尺寸,再相应dim=0上叠加,得到最终一个T的outputs为(bs*T,V)

def get_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size
    
    def normal(shape):
        return torch.randn(size=shape, device=device)*0.01
    
    def three():
        return (normal((num_inputs, num_hiddens)),
                normal((num_hiddens, num_hiddens)),
                torch.zeros(num_hiddens, device=device))
    
    W_xz, W_hz, b_z = three() # 更新⻔参数
    W_xr, W_hr, b_r = three() # 重置⻔参数
    W_xh, W_hh, b_h = three() # 候选隐状态参数
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params

1.3定义网络

  初始化参数:

def init_gru_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )

  定义gru计算:

  注意: @这个符号是矩阵乘法,*是哈达玛积
              H的尺寸仍是(bs,h),注意W_hz;W_hr等的尺寸为(h,h)

  计算公式与开始的理论图里面的公式一致。

def gru(inputs, state, params):
    W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    for X in inputs:
        Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)
        R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)
        H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)
        H = Z * H + (1 - Z) * H_tilda
        Y = H @ W_hq + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H,)

  与rnn不同的是:只要传入初始化参数,初始化state,以及forward如何计(定义的gru)丢尽RNNModel即可运算。

1.4训练命令行

vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params,
                            init_gru_state, gru)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)

1.5简洁实现

  经过nn的直接调用的RNN或GRU,得到的将X(bs,V)送进去这个net得到的都是Y(T,bs,h),都需要额外添加Linear(h,V)得到最终的outputs(T*bs,V)
  再与y(bs,T)转置reshape得到的(T*bs)计算交叉熵loss

num_inputs = vocab_size
gru_layer = nn.GRU(num_inputs, num_hiddens)
model = d2l.RNNModel(gru_layer, len(vocab))
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)

2.Lstm长短期记忆网络

2.1理论

d2l 里面GRU与Lstm实现_第3张图片

 d2l 里面GRU与Lstm实现_第4张图片

 2.2加载参数

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

2.3定义lstm计算

def get_lstm_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size
    def normal(shape):
        return torch.randn(size=shape, device=device)*0.01
    def three():
        return (normal((num_inputs, num_hiddens)),
                normal((num_hiddens, num_hiddens)),
                torch.zeros(num_hiddens, device=device))
    
    W_xi, W_hi, b_i = three() # 输⼊⻔参数
    W_xf, W_hf, b_f = three() # 遗忘⻔参数
    W_xo, W_ho, b_o = three() # 输出⻔参数
    W_xc, W_hc, b_c = three() # 候选记忆元参数
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc,
                b_c, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params

2.4定义模型:

def init_lstm_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device),
            torch.zeros((batch_size, num_hiddens), device=device))

有了c记忆元的存在,所以要初始化两个。

def lstm(inputs, state, params):
    [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,
    W_hq, b_q] = params
    (H, C) = state
    outputs = []
    for X in inputs:
        I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)
        F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)
        O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)
        C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)
        C = F * C + I * C_tilda
        H = O * torch.tanh(C)
        Y = (H @ W_hq) + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H, C)

2.5训练命令行

vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_lstm_params,
                            init_lstm_state, lstm)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)

3.强调

  送入for X,T in train_iter里面的X,Y均为(bs,T)
  X直接送入net会先经过one-hot变成(T,bs,V)
  经过net后得到的y_hat为(T*bs,V)
  在net中,如果是调用nn.RNN(len(vocab),num_hiddens)或者gru或lstm,则通过调用层得到的Y尺寸都为(T,bs,hiddens),本质上是所有时间步的隐层,需要再接一个LInear(h,V)得到输出y_hat为(T*bs,V)。
  如果是从零实现,则得到的每一个Y为(bs,V),再通过dim=0的累加得到y_hat为(T*bs,V)
  然后在于y(经过转置为(T*bs))进行交叉熵计算loss。
 

你可能感兴趣的:(文件处理,gru,lstm,自然语言处理)