STM32 HAL库PID控制电机 第二章 TB6612FNG芯片驱动GB37-520电机

STM32 HAL库PID控制电机

第二章 TB6612FNG芯片驱动GB37-520电机(HAL库)

1 电路图

STM32 HAL库PID控制电机 第二章 TB6612FNG芯片驱动GB37-520电机_第1张图片

2 TB6612简介

TB6612是双驱动,可同时驱动两个电机

STBY:接单片机的IO口清零电机全部停止,置1通过AIN1 AIN2,BIN1,BIN2 来控制正反转

VM:建议接10V以内电源( 瞬间上电12V可能会有尖峰电压击穿器件 )

VCC:接5V电源

GND:接电源负极

PWMA:接单片机的PWM口 ,控制转速

PWMB:接单片机的PWM口 ,控制转速

AO1、AO2:接电机1的两个脚

BO1、BO2:接电机2的两个脚

赋值 停止 正转 反转
AIN1 0 0 1
AIN2 0 1 0
BIN1 0 0 1
BIN2 0 1 0

所连接引脚如下表:

引脚号 定时器通道 备注
PA11 TIM1_CH4 PWMA
PB12 AIN2
PB13 AIN1
PB14 BIN1
PB15 BIN2
PA8 TIM1_CH1 PWMB

3 STM32CubeMX配置

3.1 配置PWM输出引脚

有电路图知PWM产生于PA11、PA8引脚,对应分别为TIM1_CH4、TIM1_CH1通道,所以在cubemx在左栏的Timers中选择TIM1,Clock Source选择内部时钟Internal Clock,然后选择打开通道1与通道4的PWM输出模式,在下方的参数设置中填入预分频数(psc)和自动重装载值(arr),输出的PWM频率:
P W M 输出频率(计数器溢出频率) = 计数器的时钟输入(预分频器的时钟输出) A R R + 1 = 预分频器的输入时钟(内部时钟,一般为 72 M H z ) ( P S C + 1 ) ( A R R + 1 ) PWM输出频率(计数器溢出频率)=\frac{计数器的时钟输入(预分频器的时钟输出)}{ARR+1} \\=\frac{预分频器的输入时钟(内部时钟,一般为72MHz)}{(PSC+1)(ARR+1)} PWM输出频率(计数器溢出频率)=ARR+1计数器的时钟输入(预分频器的时钟输出)=(PSC+1)(ARR+1)预分频器的输入时钟(内部时钟,一般为72MHz
在本次测试中,根据使用的减速电机,设置PWM的输出频率为18KHz,根据上述公式可以计算得到,并将两个通道都设置为PWM模式:

18,000=72,000,000/(3+1)*(999+1)

解释:

ARR:自动重装载值,arr是计数,从0到设定值,然后返回至0重新开始计数(也可以看成pwm的机械周期:将一个pwm周期分为多少份)

PSC:预分频器的值,psc是预分频系数,决定一次计数的时间。公式:一次计数时间(也是一个脉冲输出时间)=(psc+1)/主频。计数周期(也是一个pwm周期)=(psc+1)*(arr+1)/主频。

PWM的频率是指每秒钟信号从高电平到低电平再回到高电平的次数。
STM32 HAL库PID控制电机 第二章 TB6612FNG芯片驱动GB37-520电机_第2张图片

3.2 配置正反转控制引脚

配置用于控制电机正反转的两组引脚,分别为AIN1和AIN2、BIN1和BIN2,对应单片机引脚为PB13、PB12、PB14、PB15配置为GPIO_Output模式。
STM32 HAL库PID控制电机 第二章 TB6612FNG芯片驱动GB37-520电机_第3张图片

3.3 修改标签

为了方便管理和移植,我们对应TB6612芯片修改相应的标签。

(1)修改GPIO
STM32 HAL库PID控制电机 第二章 TB6612FNG芯片驱动GB37-520电机_第4张图片
(2)修改TIM
STM32 HAL库PID控制电机 第二章 TB6612FNG芯片驱动GB37-520电机_第5张图片

3.4 生成代码

STM32 HAL库PID控制电机 第二章 TB6612FNG芯片驱动GB37-520电机_第6张图片

4 编写电机驱动程序

4.1 新建motor文件夹

(1)右击新建source folder,文件名icode,用于存放自写库函数。
STM32 HAL库PID控制电机 第二章 TB6612FNG芯片驱动GB37-520电机_第7张图片
STM32 HAL库PID控制电机 第二章 TB6612FNG芯片驱动GB37-520电机_第8张图片
(2)在icode文件夹下新建motor文件,再motor文件下新建header file:motor.h和source file:motor.c文件。
STM32 HAL库PID控制电机 第二章 TB6612FNG芯片驱动GB37-520电机_第9张图片

4.2 编写驱动程序

motor.h

/*
 * motor.h
 *
 *  Created on: Apr 4, 2023
 *      Author: 77454
 */

#ifndef MOTOR_MOTOR_H_
#define MOTOR_MOTOR_H_

#include "main.h"
#include "tim.h"


void MotorControl(char motorDirection,int leftMotorPWM, int rightMotorPWM);

#endif /* MOTOR_MOTOR_H_ */

motor.c

/*
 * motor.c
 *
 *  Created on: Apr 4, 2023
 *      Author: 77454
 */
#include "motor.h"
/**
 *    @brief 控制电机进行正转、反转、停止
 *    @param None
 *    @retval None
 */
void LeftMotor_Go() //左电机正转 AIN输出相反电平  BIN也输出相反电平
{
	HAL_GPIO_WritePin(AIN1_GPIO_Port, AIN1_Pin, GPIO_PIN_SET);
	HAL_GPIO_WritePin(AIN2_GPIO_Port, AIN2_Pin, GPIO_PIN_RESET);
}
void LeftMotor_Back()  //左电机反转
{
	HAL_GPIO_WritePin(AIN1_GPIO_Port, AIN1_Pin, GPIO_PIN_RESET);
	HAL_GPIO_WritePin(AIN2_GPIO_Port, AIN2_Pin, GPIO_PIN_SET);
}
void LeftMotor_Stop()  //左电机停止 AIN和BIN输出相同电平
{
	HAL_GPIO_WritePin(AIN1_GPIO_Port, AIN1_Pin, GPIO_PIN_RESET);
	HAL_GPIO_WritePin(AIN2_GPIO_Port, AIN2_Pin, GPIO_PIN_RESET);
}
void RightMotor_Go() //右电机正转 AIN输出相反电平  BIN也输出相反电平
{
	HAL_GPIO_WritePin(BIN1_GPIO_Port, BIN1_Pin, GPIO_PIN_SET);
	HAL_GPIO_WritePin(BIN2_GPIO_Port, BIN2_Pin, GPIO_PIN_RESET);
}
void RightMotor_Back()  //右电机反转
{
	HAL_GPIO_WritePin(BIN1_GPIO_Port, BIN1_Pin, GPIO_PIN_RESET);
	HAL_GPIO_WritePin(BIN2_GPIO_Port, BIN2_Pin, GPIO_PIN_SET);
}
void RightMotor_Stop()  //右电机停止 AIN和BIN输出相同电平
{
	HAL_GPIO_WritePin(BIN1_GPIO_Port, BIN1_Pin, GPIO_PIN_RESET);
	HAL_GPIO_WritePin(BIN2_GPIO_Port, BIN2_Pin, GPIO_PIN_RESET);
}

/**
 *    @brief 控制电机进行速度控制
 *    @param 运动方向,左右电机的PWM值
 *    @retval None
 */
void MotorControl(char motorDirection, int leftMotorPWM, int rightMotorPWM) {
	switch (motorDirection) {
	case 0:
		LeftMotor_Go();
		RightMotor_Go();
		__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_4, leftMotorPWM);
		__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, rightMotorPWM);
		break;
	case 1:
		LeftMotor_Back();
		RightMotor_Back();
		__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_4, leftMotorPWM);
		__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, rightMotorPWM);
		break;
	case 2:
		LeftMotor_Stop();
		RightMotor_Stop();
		__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_4, 0);
		__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 0);
		break;
	default:
		break;
	}
}

main.c

/* USER CODE BEGIN Header */
/**
 ******************************************************************************
 * @file           : main.c
 * @brief          : Main program body
 ******************************************************************************
 * @attention
 *
 * Copyright (c) 2023 STMicroelectronics.
 * All rights reserved.
 *
 * This software is licensed under terms that can be found in the LICENSE file
 * in the root directory of this software component.
 * If no LICENSE file comes with this software, it is provided AS-IS.
 *
 ******************************************************************************
 */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "rtc.h"
#include "tim.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "../../icode/motor/motor.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
 * @brief  The application entry point.
 * @retval int
 */
int main(void) {
	/* USER CODE BEGIN 1 */

	/* USER CODE END 1 */

	/* MCU Configuration--------------------------------------------------------*/

	/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
	HAL_Init();

	/* USER CODE BEGIN Init */

	/* USER CODE END Init */

	/* Configure the system clock */
	SystemClock_Config();

	/* USER CODE BEGIN SysInit */

	/* USER CODE END SysInit */

	/* Initialize all configured peripherals */
	MX_GPIO_Init();
	MX_RTC_Init();
	MX_TIM1_Init();
	/* USER CODE BEGIN 2 */
	HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_4);
	HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
	/* USER CODE END 2 */

	/* Infinite loop */
	/* USER CODE BEGIN WHILE */
	while (1) {
		/* USER CODE END WHILE */

		/* USER CODE BEGIN 3 */

		MotorControl(0, 5000, 5000); //直行
		HAL_Delay(2000);
		MotorControl(2, 0, 0); //停止
		HAL_Delay(2000);
		MotorControl(1, 500, 500); //后退
		HAL_Delay(2000);
		MotorControl(0, 0, 200);  //前进左转
		HAL_Delay(2000);
		MotorControl(0, 200, 0);  //前进右转
		HAL_Delay(2000);
		MotorControl(1, 0, 200);  //左转退回
		HAL_Delay(2000);
		MotorControl(1, 200, 0);  //右转退回
		HAL_Delay(2000);

	}
	/* USER CODE END 3 */
}

/**
 * @brief System Clock Configuration
 * @retval None
 */
void SystemClock_Config(void) {
	RCC_OscInitTypeDef RCC_OscInitStruct = { 0 };
	RCC_ClkInitTypeDef RCC_ClkInitStruct = { 0 };
	RCC_PeriphCLKInitTypeDef PeriphClkInit = { 0 };

	/** Initializes the RCC Oscillators according to the specified parameters
	 * in the RCC_OscInitTypeDef structure.
	 */
	RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI
			| RCC_OSCILLATORTYPE_HSE;
	RCC_OscInitStruct.HSEState = RCC_HSE_ON;
	RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
	RCC_OscInitStruct.HSIState = RCC_HSI_ON;
	RCC_OscInitStruct.LSIState = RCC_LSI_ON;
	RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
	RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
	RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
	if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
		Error_Handler();
	}

	/** Initializes the CPU, AHB and APB buses clocks
	 */
	RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
			| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
	RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
	RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
	RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
	RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

	if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) {
		Error_Handler();
	}
	PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_RTC;
	PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
	if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) {
		Error_Handler();
	}
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
 * @brief  This function is executed in case of error occurrence.
 * @retval None
 */
void Error_Handler(void) {
	/* USER CODE BEGIN Error_Handler_Debug */
	/* User can add his own implementation to report the HAL error return state */
	__disable_irq();
	while (1) {
	}
	/* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

你可能感兴趣的:(STM32HAL库入门学习,stm32,单片机,嵌入式硬件)