Public Bike Management

思路

首先用Dijkstra算法求出起点到其他所有站点的最短路径和距离。然后使用深度优先搜索遍历所有最短路径,并计算在该路径下的send和collect数量,最后找到一组最优的send和collect,输出方案。

注意:1.每次只走一趟,过程中需要send和collect,不是来回走两趟。


#include
#include
#include
using namespace std;

#define MaxN 501
#define INT_MAX 1e9
int g[MaxN][MaxN];
bool visited[MaxN];
int dist[MaxN];
vector<int> pre[MaxN];

int state[MaxN];

void dijkstra(int n) {
    for (int i = 0; i < n; i++) {
        if (g[0][i] != INT_MAX) {
            dist[i] = g[0][i];
            pre[i].push_back(0);
        }
    }
    visited[0] = true;
    for (int i = 0; i < n - 1; i++) {
        int min = INT_MAX;
        int k = -1;
        for (int j = 0; j < n; j++) {
            if (!visited[j] && dist[j] < min) {
                min = dist[j];
                k = j;
            }
        }
        visited[k] = true;
        if (k == -1) {
            break;
        }
        for (int i = 0; i < n; i++) {
            if (!visited[i] && dist[k] + g[k][i] < dist[i]) {
                dist[i] = dist[k] + g[k][i];
                pre[i].clear();
                pre[i].push_back(k);
            }
            else if (!visited[i] && dist[k] + g[k][i] == dist[i]) {
                pre[i].push_back(k);
            }
        }
    }
}
void calcuSendAndCollect(vector<int> path, int half_c, int& send, int& collect) {
    for (int i = path.size() - 1; i >= 0; i--) {
        int num = path[i];
        if (state[num] > half_c) {
            collect += (state[num] - half_c);
        }
        if (state[num] < half_c) {
            if ((half_c - state[num]) < collect) {
                collect -= (half_c - state[num]);
            }
            else {
                collect = 0;
                send += ((half_c - state[num]) - collect);
            }
        }
        cout << "c: " << state[num];
        cout << " send: " << send;
        cout << " collect: " << collect;
        cout << endl;
    }
}


void dfs(int& best_send, int& best_collect, int c_max, int curr, vector<int> path, vector<int>& best_path) {
    if (curr == 0) {
        int send = 0;
        int collect = 0;
        calcuSendAndCollect(path, c_max / 2, send, collect);
        if ((send < best_send)|| (send == best_send && collect < best_collect)) {
            best_send = send;
            best_collect = collect;
            best_path = path;
        }
        return;
    }
    else {
        path.push_back(curr);
        for (int i = 0; i < pre[curr].size(); i++) {
            dfs(best_send, best_collect, c_max, pre[curr][i], path, best_path);
        }
    }
}

int main() {
    // 初始化边距
    fill(g[0], g[0] + MaxN * MaxN, INT_MAX);
    // 初始化起点到其他点的最短距离
    fill(dist, dist + MaxN, INT_MAX);
    // 初始化起点到其他点的最短距离
    fill(visited, visited + MaxN, false);

    int c_max = 0;
    int n = 0;
    int ind = 0;
    int num_of_road = 0;
    cin >> c_max >> n >> ind >> num_of_road;
    for (int i = 0; i < n; i++) {
        cin >> state[i + 1];
    }
    for (int i = 0; i < num_of_road; i++) {
        int m, n;
        cin >> m >> n;
        cin >> g[m][n];
        g[n][m] = g[m][n];
    }
    dijkstra(n + 1);
    int best_send = 1e9;
    int best_collect = 1e9;
    vector<int> path;
    vector<int> best_path;
    dfs(best_send, best_collect, c_max, ind, path, best_path);

    cout << best_send << " " << 0;
    for (int i = best_path.size() - 1; i >= 0; i--) {
        cout << "->" << best_path[i];
    }
    cout << " " << best_collect << endl;
}

你可能感兴趣的:(PAT甲级,算法,数据结构)