NCL读取hdf5文件——以AMSR2海冰密集度数据为例

由于大部分计算都是在服务器进行。因此考虑增进NCL和Shell脚本水平,之前的博文Python读取HDF5介绍了HDF5文件及其读写,但是由于服务器本身系统版本较老,且属于内网原因,决定直接使用自带的NCL脚本对其进行撰写记录。

读取

NCL6版本以后便支持HDF5文件的读写,官方文档也给出了读写HDF5文件的实例:

;----------------------------------------------------------------------
; hdf5_1.ncl
;
; Concepts illustrated:
;   - Reading group data off an HDF5 file using two methods
;   - Creating a color map using RGB triplets
;   - Drawing raster contours for faster results
;----------------------------------------------------------------------
; These files are loaded by default in NCL V6.2.0 and newer
; load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
; load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"
; load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/contributed.ncl"
;----------------------------------------------------------------------

begin
;---It is necessary to use advanced file structure to read group data
 setfileoption("nc", "FileStructure", "Advanced")
 fname = "MSG3-SEVI-MSG15-0100-NA-20130521001244.164000000Z-1074164.h5"
 f     = addfile(fname,"r")

;------------------------------------------------------------
; There are two ways to read variables off a files
; containing nested groups.
;
; Method 1: 
;     - Open the group with the "=>" syntax
;     - Read the data using the usual "->" syntax
;
; Method 2:
;     - Open the variable directly using the full path 
;       to the file
;
; Note: there's an inconsistency with how the group names
; are constructed for the two methods. We have opened a
; trouble ticket for this.
;------------------------------------------------------------

  USE_FULL_PATH = True

  if(.not.USE_FULL_PATH) then
;---First method; open group, then read data from it.
    group_name  ="/U_MARF/MSG/Level1_5/DATA/Channel_07"
    iname      = "IMAGE_DATA"
    pname      = "Palette"
    gp         = f=>$group_name$
    fdata      = tofloat(gp->$iname$)
    palette    = tofloat(gp->$pname$)
  else
;---Second method; use full path to variable.
   group_name = "/U-MARF/MSG/Level1.5/DATA/Channel 07"
   iname      = group_name + "/IMAGE_DATA"
   pname      = group_name + "/Palette"
   fdata      = tofloat(f->$iname$)
   palette    = tofloat(f->$pname$)
  end if

  wks = gsn_open_wks("png","hdf5")              ; send graphics to PNG file

  res                      = True               ; plot mods desired
  res@gsnMaximize          = True               ; maximize plot in frame

  res@cnFillOn             = True               ; color fill 
  res@cnFillMode           = "RasterFill"       ; Raster mode is much faster
                                                ; and uses less memory.
  res@cnFillPalette        = palette/255.
  res@cnLinesOn            =  False             ; turn off contour lines

  res@cnLevelSelectionMode = "ManualLevels"     ; set manual contour levels
  res@cnMinLevelValF       = min(fdata)         ; set min contour level
  res@cnMaxLevelValF       = max(fdata)         ; set max contour level
  res@cnLevelSpacingF      =  10.0              ; set contour spacing

  res@lbOrientation        = "vertical"         ; vertical labelbar
  res@lbBoxLinesOn         = False
  res@gsnTickMarksOn       = False

  if(USE_FULL_PATH)
    res@tiMainString = "Variable read using full group path"
  else
    res@tiMainString = "Variable read by opening group first"
  end if

  plot = gsn_csm_contour(wks,fdata, res) ; create plot
end

主要有两种读法,但不论哪一种,都需要对HDF5文件本身的结构有所了解,在上一篇博文中。我主要使用了matlab的h5info函数来直接查看,而NCL也提供了对应的函数:ncl_filedump
其用法也非常简单:

ncl_filedump K1VHR_15NOV2013_1200_L02_OLR.h5 | less

或者直接:

setfileoption("h5", "FileStructure", "Advanced")
f = addfile("ncl_wrt_uvt.h5", "r")
print(f)

也可查看
值得注意的是:
matlab h5info返回的信息与NCL返回的信息并不一致,这导致很多时候我们并不能像matlab或者python、NCL官方示例一样,从不同的GROUP中读取数据,NCL对于HDF5数据的处理很多时候和nc一样,直接给出变量名。
举个实例,同样是AMSR2文件,matlab给出的结构为:

 Group '/HDFEOS' 
        Group '/HDFEOS/ADDITIONAL' 
            Group '/HDFEOS/ADDITIONAL/FILE_ATTRIBUTES' 
        Group '/HDFEOS/GRIDS' 
            Group '/HDFEOS/GRIDS/NpPolarGrid12km' 
                Dataset 'XDim' 
                    Size:  608
                    MaxSize:  608
                    Datatype:   H5T_IEEE_F32LE (single)
                    ChunkSize:  []
                    Filters:  none
                    FillValue:  0.000000
                    Attributes:
                        'CLASS':  'DIMENSION_SCALE'
                        'NAME':  'This is a netCDF dimension but not a netCDF variable.'
                        'axis':  'X'
                        'long_name':  'x-coordinate in Cartesian system'
                        'REFERENCE_LIST':  H5T_COMPOUND
                Dataset 'YDim' 
                    Size:  896
                    MaxSize:  896
                    Datatype:   H5T_IEEE_F32LE (single)
                    ChunkSize:  []
                    Filters:  none
                    FillValue:  0.000000
                    Attributes:
                        'CLASS':  'DIMENSION_SCALE'
                        'NAME':  'This is a netCDF dimension but not a netCDF variable.'
                        'axis':  'Y'
                        'long_name':  'y-coordinate in Cartesian system'
                        'REFERENCE_LIST':  H5T_COMPOUND
                Dataset 'lat' 
                    Size:  608x896
                    MaxSize:  608x896
                    Datatype:   H5T_IEEE_F32LE (single)
                    ChunkSize:  []
                    Filters:  none
                    FillValue:  0.000000
                    Attributes:
                        'DIMENSION_LIST':  H5T_VLEN
                        'long_name':  'Latitude'
                        'units':  'degrees_north'
                        'standard_name':  'latitude'
                Dataset 'lon' 
                    Size:  608x896
                    MaxSize:  608x896
                    Datatype:   H5T_IEEE_F32LE (single)
                    ChunkSize:  []
                    Filters:  none
                    FillValue:  0.000000
                    Attributes:
                        'DIMENSION_LIST':  H5T_VLEN
                        'long_name':  'Longitude'
                        'standard_name':  'longitude'
                        'units':  'degrees_east'
                Group '/HDFEOS/GRIDS/NpPolarGrid12km/Data Fields' 
                    Dataset 'SI_12km_NH_18H_ASC' 
                        Size:  608x896
                        MaxSize:  608x896
                        Datatype:   H5T_STD_I32LE (int32)
                        ChunkSize:  []
                        Filters:  none
                        FillValue:  0
                        Attributes:
                            'DIMENSION_LIST':  H5T_VLEN
                            'coordinates':  'lon lat'
                            'long_name':  '18.7 GHz horizontal daily average ascending Tbs'
                            'units':  'degree_kelvin'
                            'standard_name':  'brightness_temperature'
                            'packing_convention':  'netCDF'
                            'packing_convention_description':  'unpacked = scale_factor x packed + add_offset'
                            'scale_factor':  0.100000 
                            'add_offset':  0.000000 
                            '_FillValue':  0 

算是标准的HDF5结构了,而NCL print出来则是:

dimensions:
      YDim_NpPolarGrid12km = 896
      XDim_NpPolarGrid12km = 608
      YDim_SpPolarGrid12km = 664
      XDim_SpPolarGrid12km = 632
   variables:
      double GridLat_SpPolarGrid12km ( YDim_SpPolarGrid12km, XDim_SpPolarGrid12km )
         projection :   Polar Stereographic
         corners :      ( -39.29786148540076, -39.29786148540076, -41.51518496442763, -41.51518496442763 )
         long_name :    latitude
         units :        degrees_north

      double GridLon_SpPolarGrid12km ( YDim_SpPolarGrid12km, XDim_SpPolarGrid12km )
         projection :   Polar Stereographic
         corners :      ( -42.23673723653989, 42.23673723653989,  135, -135 )
         long_name :    longitude
         units :        degrees_east

      integer SI_12km_SH_SNOWDEPTH_5DAY_SpPolarGrid12km ( YDim_SpPolarGrid12km, XDim_SpPolarGrid12km )
         coordinates :  GridLat_SpPolarGrid12km, GridLon_SpPolarGrid12km
         comment :      110 -- missing/not calculated, 120 -- Land, 130 -- Open water, 140 -- multiyear sea ice, 150 -- variability in snow depth, 160 -- snow melt
         units :        cm
         long_name :    5-day snow depth
         coordinates :  GridLat_SpPolarGrid12km, GridLon_SpPolarGrid12km
         long_name :    5-day snow depth
         projection :   Polar Stereographic

      integer SI_12km_SH_ICEDIFF_DAY_SpPolarGrid12km ( YDim_SpPolarGrid12km, XDim_SpPolarGrid12km )
         coordinates :  GridLat_SpPolarGrid12km, GridLon_SpPolarGrid12km
         comment :      data value meaning: 0 -- Open Water, 1 to 100 or -1 to -100 -- Percent difference between algorithms, 120 -- Land, 200 to 300 -- Missing NT2 value (200+BBA), -200 to -300 -- Missing BBA value (-200 - NT2)
         units :        percent
         long_name :    Sea ice concentration daily average using the difference between BBA and NT2 algorithms
         coordinates :  GridLat_SpPolarGrid12km, GridLon_SpPolarGrid12km
         long_name :    Sea ice concentration daily average using the difference between BBA and NT2 algorithms
         projection :   Polar Stereographic

      integer SI_12km_SH_ICEDIFF_DSC_SpPolarGrid12km ( YDim_SpPolarGrid12km, XDim_SpPolarGrid12km )
         coordinates :  GridLat_SpPolarGrid12km, GridLon_SpPolarGrid12km
         comment :      data value meaning: 0 -- Open Water, 1 to 100 or -1 to -100 -- Percent difference between algorithms, 120 -- Land, 200 to 300 -- Missing NT2 value (200+BBA), -200 to -300 -- Missing BBA value (-200 - NT2)
         units :        percent
         long_name :    Sea ice concentration daily descending average using the difference between BBA and NT2 algorithms
         coordinates :  GridLat_SpPolarGrid12km, GridLon_SpPolarGrid12km
         long_name :    Sea ice concentration daily descending average using the difference between BBA and NT2 algorithms
         projection :   Polar Stereographic

      integer SI_12km_SH_ICEDIFF_ASC_SpPolarGrid12km ( YDim_SpPolarGrid12km, XDim_SpPolarGrid12km )
         coordinates :  GridLat_SpPolarGrid12km, GridLon_SpPolarGrid12km
         comment :      data value meaning: 0 -- Open Water, 1 to 100 or -1 to -100 -- Percent difference between algorithms, 120 -- Land, 200 to 300 -- Missing NT2 value (200+BBA), -200 to -300 -- Missing BBA value (-200 - NT2)
         units :        percent
         long_name :    Sea ice concentration daily ascending average using the difference between BBA and NT2 algorithms
         coordinates :  GridLat_SpPolarGrid12km, GridLon_SpPolarGrid12km
         long_name :    Sea ice concentration daily ascending average using the difference between BBA and NT2 algorithms
         projection :   Polar Stereographic

      integer SI_12km_SH_ICECON_DAY_SpPolarGrid12km ( YDim_SpPolarGrid12km, XDim_SpPolarGrid12km )
         coordinates :  GridLat_SpPolarGrid12km, GridLon_SpPolarGrid12km
         comment :      data value meaning: 0 -- Open Water, 110 -- missing/not calculated, 120 -- Land
         units :        percent
         long_name :    Sea ice concentration daily average
         coordinates :  GridLat_SpPolarGrid12km, GridLon_SpPolarGrid12km
         long_name :    Sea ice concentration daily average
         projection :   Polar Stereographic

      integer SI_12km_SH_ICECON_DSC_SpPolarGrid12km ( YDim_SpPolarGrid12km, XDim_SpPolarGrid12km )
         coordinates :  GridLat_SpPolarGrid12km, GridLon_SpPolarGrid12km
         comment :      data value meaning: 0 -- Open Water, 110 -- missing/not calculated, 120 -- Land
         units :        percent
         long_name :    Sea ice concentration daily descending average
         coordinates :  GridLat_SpPolarGrid12km, GridLon_SpPolarGrid12km
         long_name :    Sea ice concentration daily descending average
         projection :   Polar Stereographic

      integer SI_12km_SH_ICECON_ASC_SpPolarGrid12km ( YDim_SpPolarGrid12km, XDim_SpPolarGrid12km )
         coordinates :  GridLat_SpPolarGrid12km, GridLon_SpPolarGrid12km
         comment :      data value meaning: 0 -- Open Water, 110 -- missing/not calculated, 120 -- Land
         units :        percent
         long_name :    Sea ice concentration daily ascending average
         coordinates :  GridLat_SpPolarGrid12km, GridLon_SpPolarGrid12km
         long_name :    Sea ice concentration daily ascending average
         projection :   Polar Stereographic

      integer SI_12km_SH_89H_DAY_SpPolarGrid12km ( YDim_SpPolarGrid12km, XDim_SpPolarGrid12km )
         coordinates :  GridLat_SpPolarGrid12km, GridLon_SpPolarGrid12km
         _FillValue :   0
         add_offset :    0
         scale_factor : 0.1
         packing_convention_description :       unpacked = scale_factor x packed + add_offset
         packing_convention :   netCDF
         standard_name :        brightness_temperature
         units :        degree_kelvin
         long_name :    89.0 GHz horizontal daily average Tbs
         coordinates :  GridLat_SpPolarGrid12km, GridLon_SpPolarGrid12km
         long_name :    89.0 GHz horizontal daily average Tbs
         projection :   Polar Stereographic

      integer SI_12km_SH_89H_DSC_SpPolarGrid12km ( YDim_SpPolarGrid12km, XDim_SpPolarGrid12km )
         coordinates :  GridLat_SpPolarGrid12km, GridLon_SpPolarGrid12km
         _FillValue :   0
         add_offset :    0
         scale_factor : 0.1
         packing_convention_description :       unpacked = scale_factor x packed + add_offset
         packing_convention :   netCDF
         standard_name :        brightness_temperature
         units :        degree_kelvin
         long_name :    89.0 GHz horizontal daily average descending Tbs
         coordinates :  GridLat_SpPolarGrid12km, GridLon_SpPolarGrid12km
         long_name :    89.0 GHz horizontal daily average descending Tbs
         projection :   Polar Stereographic

没有了Grouo信息,而是直接将变量提取出来。
因此,在使用NCL读取HDF5时,应当注意其NCL对其的处理方式。

实例AMSR2海冰数据

接下来介绍实例,用ncl读取AMSR2 12.5Km的海冰密集度数据:

;   - Reading am AMSR2 h5 file containing "sea ice"
;   - Creating the appropriate grid and time coordinates
;   - Chang format to WPS_int file

load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"
load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/contributed.ncl"
load "$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"
load "$NCARG_ROOT/lib/ncarg/nclscripts/esmf/ESMF_regridding.ncl"

begin
 setfileoption("h5", "FileStructure", "Advanced")
 ymdd1="20191201"
 ymdd2="2019-12-01"
; ymdd1=getenv("basedate1")
; ymdd2=getenv("basedate2")
 data_filename="/public/home/zhangzilu/AMSR/2019/AMSR_U2_L3_SeaIce12km_B04_"+ymdd1+".he5"
 print(data_filename)
 f = addfile(data_filename, "r")
 lat=f->GridLat_NpPolarGrid12km
 lon=f->GridLon_NpPolarGrid12km
 ice_con=tofloat(f->SI_12km_NH_ICECON_DAY_NpPolarGrid12km)
 printVarSummary(ice_con)
; print(lat)
end

便可,批量读取只要与shell脚本结合便可高效批量完成。
读取HDF5数据唯一的难点便在于对于数据结构的理解。

你可能感兴趣的:(Linux/Shell,笔记,linux,开发语言,NCL,运维)