FFmpeg在libswresample模块提供重采样函数。音频重采样过程是先建立原始音频信号,然后重新采样。重采样分为上采样和下采样,其中上采样需要插值,下采样需要抽取。从高采样率到低采样率转换是一种有损过程,FFmpeg提供若干选项和算法进行重采样。
ResamplerContext是重采样上下文的结构体,位于libswresample/resample.h,代码如下:
typedef struct ResampleContext {
const AVClass *av_class;
uint8_t *filter_bank;
int filter_length;
int filter_alloc;
int ideal_dst_incr;
int dst_incr;
int dst_incr_div;
int dst_incr_mod;
int index;
int frac;
int src_incr;
int compensation_distance;
int phase_count;
int linear;
enum SwrFilterType filter_type;
double kaiser_beta;
double factor;
enum AVSampleFormat format;
int felem_size;
int filter_shift;
int phase_count_compensation;
struct {
void (*resample_one)(void *dst, const void *src,
int n, int64_t index, int64_t incr);
int (*resample_common)(struct ResampleContext *c, void *dst,
const void *src, int n, int update_ctx);
int (*resample_linear)(struct ResampleContext *c, void *dst,
const void *src, int n, int update_ctx);
} dsp;
} ResampleContext;
其中,SwrFilterType是重采样滤波的枚举类型:
enum SwrFilterType {
SWR_FILTER_TYPE_CUBIC, // 三次插值
SWR_FILTER_TYPE_BLACKMAN_NUTTALL, // 布莱克曼窗
SWR_FILTER_TYPE_KAISER, // 凯塞窗
};
重采样初始化函数,主要过程包括设置截止频率系数、设置滤波偏移量、构建滤波器,具体如下:
static ResampleContext *resample_init(ResampleContext *c,
int out_rate, int in_rate,
int filter_size, int phase_shift,
int linear, double cutoff0,
enum AVSampleFormat format,
enum SwrFilterType filter_type,
double kaiser_beta,
double precision, int cheby,
int exact_rational)
{
// 设置截止频率系数
double cutoff = cutoff0? cutoff0 : 0.97;
double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
int phase_count= 1<<phase_shift;
int phase_count_compensation = phase_count;
int filter_length = FFMAX((int)ceil(filter_size/factor), 1);
if (filter_length > 1)
filter_length = FFALIGN(filter_length, 2);
if (exact_rational) {
int phase_count_exact, phase_count_exact_den;
av_reduce(&phase_count_exact, &phase_count_exact_den,
out_rate, in_rate, INT_MAX);
if (phase_count_exact <= phase_count) {
phase_count_compensation =
phase_count_exact * (phase_count / phase_count_exact);
phase_count = phase_count_exact;
}
}
if (!c || c->phase_count != phase_count || c->linear!=linear || c->factor != factor
|| c->filter_length != filter_length || c->format != format
|| c->filter_type != filter_type || c->kaiser_beta != kaiser_beta) {
resample_free(&c);
c = av_mallocz(sizeof(*c));
if (!c)
return NULL;
c->format= format;
c->felem_size= av_get_bytes_per_sample(c->format);
// 根据采样格式,设置滤波偏移量
switch(c->format){
case AV_SAMPLE_FMT_S16P:
c->filter_shift = 15;
break;
case AV_SAMPLE_FMT_S32P:
c->filter_shift = 30;
break;
case AV_SAMPLE_FMT_FLTP:
case AV_SAMPLE_FMT_DBLP:
c->filter_shift = 0;
break;
default:
av_log(NULL, AV_LOG_ERROR, "Unsupported sample format\n");
}
if (filter_size/factor > INT32_MAX/256) {
av_log(NULL, AV_LOG_ERROR, "Filter length too large\n");
goto error;
}
c->phase_count = phase_count;
c->linear = linear;
c->factor = factor;
c->filter_length = filter_length;
c->filter_alloc = FFALIGN(c->filter_length, 8);
c->filter_bank = av_calloc(c->filter_alloc, (phase_count+1)*c->felem_size);
c->filter_type = filter_type;
c->kaiser_beta = kaiser_beta;
c->phase_count_compensation = phase_count_compensation;
if (!c->filter_bank)
goto error;
// 构建滤波器
if (build_filter(c, (void*)c->filter_bank, factor, c->filter_length,
c->filter_alloc, phase_count, 1<<c->filter_shift, filter_type, kaiser_beta)) {
goto error;
}
memcpy(c->filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size,
c->filter_bank, (c->filter_alloc-1)*c->felem_size);
memcpy(c->filter_bank + (c->filter_alloc*phase_count )*c->felem_size,
c->filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
}
c->compensation_distance= 0;
if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate,
in_rate * (int64_t)phase_count, INT32_MAX/2)) {
goto error;
}
while (c->dst_incr < (1<<20) && c->src_incr < (1<<20)) {
c->dst_incr *= 2;
c->src_incr *= 2;
}
c->ideal_dst_incr = c->dst_incr;
c->dst_incr_div = c->dst_incr / c->src_incr;
c->dst_incr_mod = c->dst_incr % c->src_incr;
c->index= -phase_count*((c->filter_length-1)/2);
c->frac= 0;
// 初始化dsp重采样
swri_resample_dsp_init(c);
return c;
error:
av_freep(&c->filter_bank);
av_free(c);
return NULL;
}
build_filter构建滤波器是在初始化函数调用到,代码如下:
static int build_filter(ResampleContext *c, void *filter,
double factor, int tap_count, int alloc,
int phase_count, int scale,
int filter_type, double kaiser_beta){
int ph, i;
int ph_nb = phase_count % 2 ? phase_count : phase_count / 2 + 1;
double x, y, w, t, s;
double *tab = av_malloc_array(tap_count+1, sizeof(*tab));
double *sin_lut = av_malloc_array(ph_nb, sizeof(*sin_lut));
const int center= (tap_count-1)/2;
double norm = 0;
int ret = AVERROR(ENOMEM);
if (!tab || !sin_lut)
goto fail;
// 如果是上采样,只需要插值,不用滤波
if (factor > 1.0)
factor = 1.0;
if (factor == 1.0) {
for (ph = 0; ph < ph_nb; ph++)
sin_lut[ph] = sin(M_PI * ph / phase_count) * (center & 1 ? 1 : -1);
}
for(ph = 0; ph < ph_nb; ph++) {
s = sin_lut[ph];
for(i=0;i<tap_count;i++) {
x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
if (x == 0) y = 1.0;
else if (factor == 1.0)
y = s / x;
else
y = sin(x) / x;
// 设置不同滤波器的参数
switch(filter_type){
case SWR_FILTER_TYPE_CUBIC:{
const float d= -0.5;
x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
else y= d*(-4 + 8*x - 5*x*x + x*x*x);
break;}
case SWR_FILTER_TYPE_BLACKMAN_NUTTALL:
w = 2.0*x / (factor*tap_count);
t = -cos(w);
y *= 0.3635819 - 0.4891775 * t + 0.1365995 * (2*t*t-1)
- 0.0106411 * (4*t*t*t - 3*t);
break;
case SWR_FILTER_TYPE_KAISER:
w = 2.0*x / (factor*tap_count*M_PI);
y *= bessel(kaiser_beta*sqrt(FFMAX(1-w*w, 0)));
break;
default:
av_assert0(0);
}
tab[i] = y;
s = -s;
if (!ph)
norm += y;
}
// 归一化操作
switch(c->format){
case AV_SAMPLE_FMT_S16P:
for(i=0;i<tap_count;i++) {
((int16_t*)filter)[ph * alloc + i]
= av_clip_int16(lrintf(tab[i] * scale / norm));
}
if (phase_count % 2) break;
for (i = 0; i < tap_count; i++) {
((int16_t*)filter)[(phase_count-ph) * alloc + tap_count-1-i]
= ((int16_t*)filter)[ph * alloc + i];
}
break;
case AV_SAMPLE_FMT_S32P:
for(i=0;i<tap_count;i++) {
((int32_t*)filter)[ph * alloc + i]
= av_clipl_int32(llrint(tab[i] * scale / norm));
}
if (phase_count % 2) break;
for (i = 0; i < tap_count; i++) {
((int32_t*)filter)[(phase_count-ph) * alloc + tap_count-1-i]
= ((int32_t*)filter)[ph * alloc + i];
}
break;
case AV_SAMPLE_FMT_FLTP:
for(i=0;i<tap_count;i++)
((float*)filter)[ph * alloc + i] = tab[i] * scale / norm;
if (phase_count % 2) break;
for (i = 0; i < tap_count; i++) {
((float*)filter)[(phase_count-ph) * alloc + tap_count-1-i]
= ((float*)filter)[ph * alloc + i];
}
break;
case AV_SAMPLE_FMT_DBLP:
for(i=0;i<tap_count;i++)
((double*)filter)[ph * alloc + i] = tab[i] * scale / norm;
if (phase_count % 2) break;
for (i = 0; i < tap_count; i++) {
((double*)filter)[(phase_count-ph) * alloc + tap_count-1-i]
= ((double*)filter)[ph * alloc + i];
}
break;
}
}
ret = 0;
fail:
av_free(tab);
av_free(sin_lut);
return ret;
}
多次重采样函数代码如下:
static int multiple_resample(ResampleContext *c, AudioData *dst, int dst_size,
AudioData *src, int src_size, int *consumed){
int i;
int av_unused mm_flags = av_get_cpu_flags();
int need_emms = c->format == AV_SAMPLE_FMT_S16P && ARCH_X86_32 &&
(mm_flags & (AV_CPU_FLAG_MMX2 | AV_CPU_FLAG_SSE2))
== AV_CPU_FLAG_MMX2;
int64_t max_src_size = (INT64_MAX/2 / c->phase_count) / c->src_incr;
if (c->compensation_distance)
dst_size = FFMIN(dst_size, c->compensation_distance);
src_size = FFMIN(src_size, max_src_size);
*consumed = 0;
if (c->filter_length == 1 && c->phase_count == 1) {
int64_t index2= (1LL<<32)*c->frac/c->src_incr + (1LL<<32)*c->index;
int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
int new_size = (src_size * (int64_t)c->src_incr - c->frac
+ c->dst_incr - 1) / c->dst_incr;
dst_size = FFMAX(FFMIN(dst_size, new_size), 0);
if (dst_size > 0) {
for (i = 0; i < dst->ch_count; i++) {
// 调用dsp的resample_one进行单次采样
c->dsp.resample_one(dst->ch[i], src->ch[i], dst_size, index2, incr);
if (i+1 == dst->ch_count) {
c->index += dst_size * c->dst_incr_div;
c->index += (c->frac + dst_size
* (int64_t)c->dst_incr_mod) / c->src_incr;
*consumed = c->index;
c->frac = (c->frac + dst_size
* (int64_t)c->dst_incr_mod) % c->src_incr;
c->index = 0;
}
}
}
} else {
int64_t end_index = (1LL + src_size - c->filter_length) * c->phase_count;
int64_t delta_frac = (end_index - c->index) * c->src_incr - c->frac;
int delta_n = (delta_frac + c->dst_incr - 1) / c->dst_incr;
int (*resample_func)(struct ResampleContext *c, void *dst,
const void *src, int n, int update_ctx);
dst_size = FFMAX(FFMIN(dst_size, delta_n), 0);
if (dst_size > 0) {
// resample_linear和resample_common保持相同操作
resample_func = (c->linear && (c->frac || c->dst_incr_mod)) ?
c->dsp.resample_linear : c->dsp.resample_common;
for (i = 0; i < dst->ch_count; i++) {
*consumed = resample_func(c, dst->ch[i], src->ch[i],
dst_size, i+1 == dst->ch_count);
}
}
}
if(need_emms)
emms_c();
if (c->compensation_distance) {
c->compensation_distance -= dst_size;
if (!c->compensation_distance) {
c->dst_incr = c->ideal_dst_incr;
c->dst_incr_div = c->dst_incr / c->src_incr;
c->dst_incr_mod = c->dst_incr % c->src_incr;
}
}
return dst_size;
}
重采样释放函数,释放filter_bank指针和ResampleContext:
static void resample_free(ResampleContext **cc){
ResampleContext *c = *cc;
if(!c)
return;
av_freep(&c->filter_bank);
av_freep(cc);
}