LeetCode算法小抄--归并排序详解及应用

LeetCode算法小抄--归并排序详解及应用

    • 归并排序详解及应用
        • [912. 排序数组](https://leetcode.cn/problems/sort-an-array/)
        • [315. 计算右侧小于当前元素的个数](https://leetcode.cn/problems/count-of-smaller-numbers-after-self/)[hard]--华为笔试
        • [493. 翻转对](https://leetcode.cn/problems/reverse-pairs/)[hard]
        • [327. 区间和的个数](https://leetcode.cn/problems/count-of-range-sum/)[hard]

⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计9208字,阅读大概需要5分钟
更多学习内容, 欢迎关注【文末】我的个人微信公众号:不懂开发的程序猿
个人网站:https://jerry-jy.co/

归并排序详解及应用

归并排序的代码框架

// 定义:排序 nums[lo..hi]
void sort(int[] nums, int lo, int hi) {
    if (lo == hi) {
        return;
    }
    int mid = (lo + hi) / 2;
    // 利用定义,排序 nums[lo..mid]
    sort(nums, lo, mid);
    // 利用定义,排序 nums[mid+1..hi]
    sort(nums, mid + 1, hi);

    /****** 后序位置 ******/
    // 此时两部分子数组已经被排好序
    // 合并两个有序数组,使 nums[lo..hi] 有序
    merge(nums, lo, mid, hi);
    /*********************/
}

// 将有序数组 nums[lo..mid] 和有序数组 nums[mid+1..hi]
// 合并为有序数组 nums[lo..hi]
void merge(int[] nums, int lo, int mid, int hi);

总结归并排序:先把左半边数组排好序,再把右半边数组排好序,然后把两半数组合并。

类似于二叉树的后序遍历:先递归左子树,再递归右子树,然后写后序位置

归并排序的过程可以在逻辑上抽象成一棵二叉树,树上的每个节点的值可以认为是 nums[lo..hi],叶子节点的值就是数组中的单个元素

LeetCode算法小抄--归并排序详解及应用_第1张图片

然后,在每个节点的后序位置(左右子节点已经被排好序)的时候执行 merge 函数,合并两个子节点上的子数组

LeetCode算法小抄--归并排序详解及应用_第2张图片

class Merge {

    // 用于辅助合并有序数组
    private static int[] temp;

    public static void sort(int[] nums) {
        // 先给辅助数组开辟内存空间
        temp = new int[nums.length];
        // 排序整个数组(原地修改)
        sort(nums, 0, nums.length - 1);
    }

    // 定义:将子数组 nums[lo..hi] 进行排序
    private static void sort(int[] nums, int lo, int hi) {
        if (lo == hi) {
            // 单个元素不用排序
            return;
        }
        // 这样写是为了防止溢出,效果等同于 (hi + lo) / 2
        int mid = lo + (hi - lo) / 2;
        // 先对左半部分数组 nums[lo..mid] 排序
        sort(nums, lo, mid);
        // 再对右半部分数组 nums[mid+1..hi] 排序
        sort(nums, mid + 1, hi);
        // 将两部分有序数组合并成一个有序数组
        merge(nums, lo, mid, hi);
    }

    // 将 nums[lo..mid] 和 nums[mid+1..hi] 这两个有序数组合并成一个有序数组
    private static void merge(int[] nums, int lo, int mid, int hi) {
        // 先把 nums[lo..hi] 复制到辅助数组中
        // 以便合并后的结果能够直接存入 nums
        for (int i = lo; i <= hi; i++) {
            temp[i] = nums[i];
        }

        // 数组双指针技巧,合并两个有序数组
        int i = lo, j = mid + 1;
        for (int p = lo; p <= hi; p++) {
            if (i == mid + 1) {
                // 左半边数组已全部被合并
                nums[p] = temp[j++];
            } else if (j == hi + 1) {
                // 右半边数组已全部被合并
                nums[p] = temp[i++];
            } else if (temp[i] > temp[j]) {
                nums[p] = temp[j++];
            } else {
                nums[p] = temp[i++];
            }
        }
    }
}

LeetCode算法小抄--归并排序详解及应用_第3张图片

注意我们不是在 merge 函数执行的时候 new 辅助数组,而是提前把 temp 辅助数组 new 出来了,这样就避免了在递归中频繁分配和释放内存可能产生的性能问题

归并排序的时间复杂度, O(NlogN)

递归算法的复杂度计算,就是子问题个数 x 解决一个子问题的复杂度

执行的次数是二叉树节点的个数,每次执行的复杂度就是每个节点代表的子数组的长度,所以总的时间复杂度就是整棵树中「数组元素」的个数

所以从整体上看,这个二叉树的高度是 logN,其中每一层的元素个数就是原数组的长度 N,所以总的时间复杂度就是 O(NlogN)

912. 排序数组

给你一个整数数组 nums,请你将该数组升序排列。

// class Solution {
//     public int[] sortArray(int[] nums) {
//         // API选手(手动狗头)
//         Arrays.sort(nums);
//         return nums;
//     }
// }

// 归并排序
class Solution {
    public int[] sortArray(int[] nums) {
        Merge.sort(nums);
        return nums;
    }
}
class Merge {

    // 用于辅助合并有序数组
    private static int[] temp;

    public static void sort(int[] nums) {
        // 先给辅助数组开辟内存空间
        temp = new int[nums.length];
        // 排序整个数组(原地修改)
        sort(nums, 0, nums.length - 1);
    }

    // 定义:将子数组 nums[lo..hi] 进行排序
    private static void sort(int[] nums, int lo, int hi) {
        if (lo == hi) {
            // 单个元素不用排序
            return;
        }
        // 这样写是为了防止溢出,效果等同于 (hi + lo) / 2
        int mid = lo + (hi - lo) / 2;
        // 先对左半部分数组 nums[lo..mid] 排序
        sort(nums, lo, mid);
        // 再对右半部分数组 nums[mid+1..hi] 排序
        sort(nums, mid + 1, hi);
        // 将两部分有序数组合并成一个有序数组
        merge(nums, lo, mid, hi);
    }

    // 将 nums[lo..mid] 和 nums[mid+1..hi] 这两个有序数组合并成一个有序数组
    private static void merge(int[] nums, int lo, int mid, int hi) {
        // 先把 nums[lo..hi] 复制到辅助数组中
        // 以便合并后的结果能够直接存入 nums
        for (int i = lo; i <= hi; i++) {
            temp[i] = nums[i];
        }

        // 数组双指针技巧,合并两个有序数组
        int i = lo, j = mid + 1;
        for (int p = lo; p <= hi; p++) {
            if (i == mid + 1) {
                // 左半边数组已全部被合并
                nums[p] = temp[j++];
            } else if (j == hi + 1) {
                // 右半边数组已全部被合并
                nums[p] = temp[i++];
            } else if (temp[i] > temp[j]) {
                nums[p] = temp[j++];
            } else {
                nums[p] = temp[i++];
            }
        }
    }
}

315. 计算右侧小于当前元素的个数[hard]–华为笔试

给你一个整数数组 nums ,按要求返回一个新数组 counts 。数组 counts 有该性质: counts[i] 的值是 nums[i] 右侧小于 nums[i] 的元素的数量。

class Solution {
    public List<Integer> countSmaller(int[] nums) {
        // 暴力破解
        // 超出时间限制
        List<Integer> counts = new LinkedList<>();
        for(int i = 0; i < nums.length; i++){
            int count = 0;
            for(int j = i + 1; j < nums.length; j++){
                if(nums[j] < nums[i]) count++;
            }
            counts.add(count);
        }
        return counts;
    }
}

考虑归并排序

和归并排序什么关系呢,主要在 merge 函数,我们在使用 merge 函数合并两个有序数组的时候,其实是可以知道一个元素 nums[i] 后边有多少个元素比 nums[i] 小的

LeetCode算法小抄--归并排序详解及应用_第4张图片

这时候我们应该把 temp[i] 放到 nums[p] 上,因为 temp[i] < temp[j]

但就在这个场景下,我们还可以知道一个信息:5 后面比 5 小的元素个数就是 左闭右开区间 [mid + 1, j) 中的元素个数,即 2 和 4 这两个元素:

LeetCode算法小抄--归并排序详解及应用_第5张图片

换句话说,在对 nums[lo..hi] 合并的过程中,每当执行 nums[p] = temp[i] 时,就可以确定 temp[i] 这个元素后面比它小的元素个数为 j - mid - 1

class Solution {
    private class Pair {
        int val, id;
        Pair(int val, int id) {
            // 记录数组的元素值
            this.val = val;
            // 记录元素在数组中的原始索引
            this.id = id;
        }
    }

    // 归并排序所用的辅助数组
    private Pair[] temp;
    // 记录每个元素后面比自己小的元素个数
    private int[] count;

    public List<Integer> countSmaller(int[] nums) {
        int n = nums.length;
        count = new int[n];
        temp = new Pair[n];   
        Pair[] arr = new Pair[n];
        // 记录元素原始的索引位置,以便在 count 数组中更新结果
        for (int i = 0; i < n; i++)
            arr[i] = new Pair(nums[i], i);
        
        // 执行归并排序,本题结果被记录在 count 数组中
        sort(arr, 0, n - 1);
        
        List<Integer> res = new LinkedList<>();
        for (int c : count) res.add(c);
        return res;             
    }

    // 归并排序
    private void sort(Pair[] arr, int lo, int hi) {
        if (lo == hi) return;
        int mid = lo + (hi - lo) / 2;
        sort(arr, lo, mid);
        sort(arr, mid + 1, hi);
        merge(arr, lo, mid, hi);
    }

    // 合并两个有序数组
    private void merge(Pair[] arr, int lo, int mid, int hi) {
        for (int i = lo; i <= hi; i++) {
            temp[i] = arr[i];
        }
        
        int i = lo, j = mid + 1;
        for (int p = lo; p <= hi; p++) {
            if (i == mid + 1) { // 左边数组已经排序好了
                arr[p] = temp[j++];
            } else if (j == hi + 1) { // 右边数组已经排序好了
                arr[p] = temp[i++];
                // 更新 count 数组
                count[arr[p].id] += j - mid - 1;
            } else if (temp[i].val > temp[j].val) {
                arr[p] = temp[j++];
            } else {
                arr[p] = temp[i++];
                // 更新 count 数组
                count[arr[p].id] += j - mid - 1;
            }
        }
    }    
}

因为在排序过程中,每个元素的索引位置会不断改变,所以我们用一个 Pair 类封装每个元素及其在原始数组 nums 中的索引,以便 count 数组记录每个元素之后小于它的元素个数。

493. 翻转对[hard]

给定一个数组 nums ,如果 i < jnums[i] > 2*nums[j] 我们就将 (i, j) 称作一个重要翻转对

你需要返回给定数组中的重要翻转对的数量。

这道题目和题目是一个意思,而且和上一道题非常类似,只不过上一题求的是 nums[i] > nums[j],这里求的是 nums[i] > 2*nums[j] 罢了

解题的思路当然还是要在 merge 函数中做点手脚,当 nums[lo..mid]nums[mid+1..hi] 两个子数组完成排序后,对于 nums[lo..mid] 中的每个元素 nums[i],去 nums[mid+1..hi] 中寻找符合条件的 nums[j] 就行了

// 记录「翻转对」的个数
int count = 0;

// 将 nums[lo..mid] 和 nums[mid+1..hi] 这两个有序数组合并成一个有序数组
private void merge(int[] nums, int lo, int mid, int hi) {
    for (int i = lo; i <= hi; i++) {
        temp[i] = nums[i];
    }
    
    // 在合并有序数组之前,加点私货
    for (int i = lo; i <= mid; i++) {
        // 对于左半边的每个 nums[i],都去右半边寻找符合条件的元素
        for (int j = mid + 1; j <= hi; j++) {
            // nums 中的元素可能较大,乘 2 可能溢出,所以转化成 long
            if ((long)nums[i] > (long)nums[j] * 2) {
                count++;
            }
        }
    }
    
    // 数组双指针技巧,合并两个有序数组
    int i = lo, j = mid + 1;
    for (int p = lo; p <= hi; p++) {
        if (i == mid + 1) {
            nums[p] = temp[j++];
        } else if (j == hi + 1) {
            nums[p] = temp[i++];
        } else if (temp[i] > temp[j]) {
            nums[p] = temp[j++];
        } else {
            nums[p] = temp[i++];
        }
    }
}

不过呢,这段代码提交会超时,毕竟额外添加了一个嵌套 for 循环。怎么进行优化呢,注意子数组 nums[lo..mid] 是排好序的,也就是 nums[i] <= nums[i+1]

所以,对于 nums[i], lo <= i <= mid,我们在找到的符合 nums[i] > 2*nums[j]nums[j], mid+1 <= j <= hi,也必然也符合 nums[i+1] > 2*nums[j]

换句话说,我们不用每次都傻乎乎地去遍历整个 nums[mid+1..hi],只要维护一个开区间边界 end,维护 nums[mid+1..end-1] 是符合条件的元素即可

class Solution {
    public int reversePairs(int[] nums) {
        // 执行归并排序
        sort(nums);
        return count;
    }

    private int[] temp;

    public void sort(int[] nums) {
        temp = new int[nums.length];
        sort(nums, 0, nums.length - 1);
    }  
    
    // 归并排序
    private void sort(int[] arr, int lo, int hi) {
        if (lo == hi) return;
        int mid = lo + (hi - lo) / 2;
        sort(arr, lo, mid);
        sort(arr, mid + 1, hi);
        merge(arr, lo, mid, hi);
    }

    // 记录「翻转对」的个数
    private int count = 0;

    private void merge(int[] nums, int lo, int mid, int hi) {
        for (int i = lo; i <= hi; i++) {
            temp[i] = nums[i];
        }
        
        // 进行效率优化,维护左闭右开区间 [mid+1, end) 中的元素乘 2 小于 nums[i]
        // 为什么 end 是开区间?因为这样的话可以保证初始区间 [mid+1, mid+1) 是一个空区间
        int end = mid + 1;
        for (int i = lo; i <= mid; i++) {
            // nums 中的元素可能较大,乘 2 可能溢出,所以转化成 long
            while (end <= hi && (long)nums[i] > (long)nums[end] * 2) {
                end++;
            }
            count += end - (mid + 1);
        }

        // 数组双指针技巧,合并两个有序数组
        int i = lo, j = mid + 1;
        for (int p = lo; p <= hi; p++) {
            if (i == mid + 1) {
                nums[p] = temp[j++];
            } else if (j == hi + 1) {
                nums[p] = temp[i++];
            } else if (temp[i] > temp[j]) {
                nums[p] = temp[j++];
            } else {
                nums[p] = temp[i++];
            }
        }
    }          
}

327. 区间和的个数[hard]

给你一个整数数组 nums 以及两个整数 lowerupper 。求数组中,值位于范围 [lower, upper] (包含 lowerupper)之内的 区间和的个数

区间和 S(i, j) 表示在 nums 中,位置从 ij 的元素之和,包含 ij (ij)。

简单说,题目让你计算元素和落在 [lower, upper] 中的所有子数组的个数。

首先,解决这道题需要快速计算子数组的和,创建一个前缀和数组 preSum 来辅助我们迅速计算区间和。

preSum 中的两个元素之差其实就是区间和。

class Solution {
    private int lower, upper;

    public int countRangeSum(int[] nums, int lower, int upper) {
    this.lower = lower;
        this.upper = upper;
        // 构建前缀和数组,注意 int 可能溢出,用 long 存储
        long[] preSum = new long[nums.length + 1];
        for (int i = 0; i < nums.length; i++) {
            preSum[i + 1] = (long)nums[i] + preSum[i];
        }
        // 对前缀和数组进行归并排序
        sort(preSum);
        return count;
    }

    private long[] temp;

    public void sort(long[] nums) {
        temp = new long[nums.length];
        sort(nums, 0, nums.length - 1);
    }

    private void sort(long[] nums, int lo, int hi) {
        if (lo == hi) {
            return;
        }
        int mid = lo + (hi - lo) / 2;
        sort(nums, lo, mid);
        sort(nums, mid + 1, hi);
        merge(nums, lo, mid, hi);
    }

    private int count = 0;

    private void merge(long[] nums, int lo, int mid, int hi) {
        for (int i = lo; i <= hi; i++) {
            temp[i] = nums[i];
        }
        
        // 在合并有序数组之前加点私货(这段代码会超时)
        // for (int i = lo; i <= mid; i++) {
        //     for (int j = mid + 1; j <= hi; k++) {
        //         // 寻找符合条件的 nums[j]
        //         long delta = nums[j] - nums[i];
        //         if (delta <= upper && delta >= lower) {
        //             count++;
        //         }
        //     }
        // }
        
        // 进行效率优化
        // 维护左闭右开区间 [start, end) 中的元素和 nums[i] 的差在 [lower, upper] 中
        int start = mid + 1, end = mid + 1;
        for (int i = lo; i <= mid; i++) {
            // 如果 nums[i] 对应的区间是 [start, end),
            // 那么 nums[i+1] 对应的区间一定会整体右移,类似滑动窗口
            while (start <= hi && nums[start] - nums[i] < lower) {
                start++;
            }
            while (end <= hi && nums[end] - nums[i] <= upper) {
                end++;
            }
            count += end - start;
        }

        // 数组双指针技巧,合并两个有序数组
        int i = lo, j = mid + 1;
        for (int p = lo; p <= hi; p++) {
            if (i == mid + 1) {
                nums[p] = temp[j++];
            } else if (j == hi + 1) {
                nums[p] = temp[i++];
            } else if (temp[i] > temp[j]) {
                nums[p] = temp[j++];
            } else {
                nums[p] = temp[i++];
            }
        }
    }
}

我们依然在 merge 函数合并有序数组之前加了一些逻辑,这个效率优化有点类似维护一个滑动窗口,让窗口中的元素和 nums[i] 的差落在 [lower, upper] 中。

所有递归的算法,本质上都是在遍历一棵(递归)树,然后在节点(前中后序位置)上执行代码。你要写递归算法,本质上就是要告诉每个节点需要做什么

–end–

你可能感兴趣的:(LeetCode,leetcode,算法,二叉树)