hist seg, find_peaks

hist seg, find_peaks_第1张图片

import cv2
import numpy as np
from PIL import Image
from matplotlib import pyplot as plt
from scipy import signal

if __name__ == "__main__":
    file = r'D:\code_color\hist_seg\2007-TIP-HistogramSegmentation-master\images\lena.png'
    img = cv2.imread(file, 0)
    # img = np.array(Image.open(file))
    h, w = img.shape
    print(h, w)

    hist, bins = np.histogram(img, 256, [0, 256])
    print(hist, hist.shape, bins)

    hist = hist / (h * w)
    hist2 = hist.max() - hist

    k_size = 3
    kernel = np.ones(k_size) / k_size
    kernel2 = np.array([0.1, 0.2, 0.4, 0.2, 0.1])
    kernel3 = np.array([0.3, 0.4, 0.3])
    hist3 = signal.correlate(hist, kernel3, mode='same')
    hist3 = hist3.max() - hist3

    #x = hist2
    mmax = hist2.max()
    peaks2, properties2 = signal.find_peaks(hist2, distance=5,  prominence=mmax / 20, width=2, plateau_size=[0, 100])
    '''
    distance:两个相邻peak的最小横轴距离
    顶的高度:prominence:突出的程度需满足的条件(顶点一横线,向下平移,直到与更高peak的边交叉。 左右两边取更高的base)
    顶的宽度:width: 一半 prominence位置处的宽度
    plateau_size:允许的平顶的横轴大小范围, 
    '''
    peaks3, properties3 = signal.find_peaks(hist3, distance=5,  prominence=mmax / 20, width=2, plateau_size=[0, 100])
    print('len:', len(peaks2), len(peaks3), len(properties2), len(properties3))
    print(peaks2, properties2)
    print(peaks3, properties3)
    plt.figure()
    plt.subplot(221)
    plt.plot(hist)

    hist, peaks, properties = hist2, peaks2, properties2
    plt.subplot(222)
    plt.plot(hist)
    plt.plot(peaks, hist2[peaks], "x")
    plt.vlines(x=peaks, ymin=hist[peaks] - properties["prominences"],
               ymax=hist[peaks], color="C1")
    plt.hlines(y=properties["width_heights"], xmin=properties["left_ips"],
               xmax=properties["right_ips"], color="C1")

    hist, peaks, properties = hist2, peaks2, properties2
    plt.subplot(223)
    plt.plot(hist.max() - hist)
    hist2[peaks] = hist.max() - hist[peaks]
    plt.plot(peaks, hist[peaks], "x")
    # plt.vlines(x=peaks, ymin=x[peaks] - properties["prominences"],
    #            ymax=x[peaks], color="C1")
    # plt.hlines(y=properties["width_heights"], xmin=properties["left_ips"],
    #            xmax=properties["right_ips"], color="C1")

    plt.vlines(x=peaks, ymin=hist[peaks],
               ymax=hist[peaks] + properties["prominences"], color="C1")
    plt.hlines(y=hist.max()-properties["width_heights"], xmin=properties["left_ips"],
               xmax=properties["right_ips"], color="C1")

    hist, peaks, properties = hist3, peaks3, properties3
    plt.subplot(224)
    plt.plot(hist.max() - hist)
    hist[peaks] = hist.max() - hist[peaks]
    plt.plot(peaks, hist[peaks], "x")
    plt.vlines(x=peaks, ymin=hist[peaks],
               ymax=hist[peaks] + properties["prominences"], color="C1")
    plt.hlines(y=hist.max()-properties["width_heights"], xmin=properties["left_ips"],
               xmax=properties["right_ips"], color="C1")
    plt.show()

hist seg, find_peaks_第2张图片

from collections import Counter

import cv2
import numpy as np
from matplotlib import pyplot as plt
from scipy import signal
from skimage import color
from skimage.segmentation import mark_boundaries


def show_hist_seg(hist, peaks,properties ):
    plt.figure
    plt.plot(hist.max() - hist)
    hist[peaks] = hist.max() - hist[peaks]
    plt.plot(peaks, hist[peaks], "x")
    plt.vlines(x=peaks, ymin=hist[peaks],
               ymax=hist[peaks] + properties["prominences"], color="C1")
    plt.hlines(y=hist.max()-properties["width_heights"], xmin=properties["left_ips"],
               xmax=properties["right_ips"], color="C1")
    plt.show()
def hist_seg(img, filter=0, show_seg=1, show_im=1):
    # img = np.array(Image.open(file))
    h, w = img.shape[:2]
    print(h, w)

    hist, bins = np.histogram(img, 256, [0, 256])
    hist = hist / (h * w)

    k_size = 3
    kernel = np.ones(k_size) / k_size
    kernel2 = np.array([0.1, 0.2, 0.4, 0.2, 0.1])
    kernel3 = np.array([0.3, 0.4, 0.3])
    if filter:
        hist2 = signal.correlate(hist, kernel3, mode='same')
        hist2 = hist2.max() - hist2
    else:
        hist2 = hist.max() - hist

    mmax = hist2.max()
    peaks, properties = signal.find_peaks(hist2, distance=1,  prominence=mmax / 50, width=1, plateau_size=[0, 100])
    if show_seg:
        show_hist_seg(hist2, peaks, properties)

    # img patch mean
    min_index = list(peaks)
    min_index.append(255)
    img2 = img.copy()
    for k in range(len(min_index)):
        if k == 0:
            mask = img2 < min_index[k]
        else:
            mask = np.logical_and((img2 < min_index[k]), (img2 > min_index[k - 1]))

        if len(img.shape) == 3:
            img2[..., 0][mask[..., 0]] = np.mean(img2[..., 0][mask[..., 0]])
            img2[..., 1][mask[..., 1]] = np.mean(img2[..., 1][mask[..., 1]])
            img2[..., 2][mask[..., 2]] = np.mean(img2[..., 2][mask[..., 2]])
        if len(img.shape) == 2:
            img2[mask] = np.mean(img2[mask])
    if show_im:

        plt.figure()
        plt.imshow(np.hstack((img, img2)))
        plt.show()

    return peaks, img2


def superpixel_segmentation_hist(image, segments):
    """
    Segment an image into an approximative number of superpixels.
    inputs:
        -image: a numpy array to be segmented
        -num_segments: the number of of desired segments in the segmentation
    returns:
        - the number of segments after superpixel segmentation
        - the content of each cluster (center coordinates, mean of color)
    """

    clusters = np.zeros((len(np.unique(segments)), 5))        # 每个seg的 质心 和 平均颜色
    superpixels = color.label2rgb(segments, image, kind='avg')#
    print(len(clusters), np.unique(segments))
    for c in np.unique(segments):
        indexes = np.where(segments == c)
        mean_color = superpixels[indexes[0][0], indexes[1][
            0]]  # just access the first element of superpixel since all elements of superpixel are average color of cluster
        mean_indexes = np.array([int(np.round(np.mean(indexes[0]))), int(np.round(np.mean(indexes[1])))])
        print(c, mean_indexes, mean_color)
        clusters[c] = np.concatenate((mean_indexes, mean_color), axis=None)

    return segments, clusters, superpixels

def seg_im(image, segments, clusters, superpixels ):

    plt.figure()
    plt.subplot(221)
    plt.imshow(segments)
    plt.subplot(222)
    plt.imshow(np.clip(superpixels,0,255).astype(np.uint8))
    plt.subplot(223)
    plt.imshow(mark_boundaries(image, segments))
    plt.show()

    return segments, clusters, superpixels
if __name__ == "__main__":
    file = r'D:\code_color\hist_seg\2007-TIP-HistogramSegmentation-master\images\aa.png'
    img = cv2.imread(file)[..., ::-1]
    '''
    1. 输入彩色图,对彩色图处理hist分段,各通道分段求均值
    '''
    peaks, img2 = hist_seg(img, filter=0)

    h, w, c = img.shape
    r = img[..., 0]
    g = img[..., 1]
    b = img[..., 2]

    '''
    2. 输入单通道,对单通道处理hist分段,各通道分段求均值
    '''
    min_index_r, r2 = hist_seg(r)
    min_index_g, g2 = hist_seg(g)
    min_index_b, b2 = hist_seg(b)

    out = cv2.merge([r2, g2, b2])
    plt.figure()
    plt.imshow((np.hstack((img, out))))
    plt.title("split , hist seg, merge")
    plt.show()

    '''
    3. 输入单通道,对单通道处理hist分段,各通道的所有分段融合,各通道分段求均值(不太合理,应为可能重合或者靠的很近)
    '''
    # 所有的min_index
    min_index = list(min_index_r) + list(min_index_g) + list(min_index_b)
    min_index2 = []
    for x in min_index:
        if x not in min_index2:
            min_index2.append(x)

    min_index = sorted(min_index2)
    print('final min index :', min_index)
    min_index.append(255)
    img2 = img.copy()
    for k in range(len(min_index)):
        if k == 0:
            mask = img2 < min_index[k]
        else:
            mask = np.logical_and((img2 < min_index[k]), (img2 > min_index[k - 1]))

        img2[..., 0][mask[..., 0]] = np.mean(img2[..., 0][mask[..., 0]])
        img2[..., 1][mask[..., 1]] = np.mean(img2[..., 1][mask[..., 1]])
        img2[..., 2][mask[..., 2]] = np.mean(img2[..., 2][mask[..., 2]])
    plt.figure()
    plt.imshow(np.hstack((img, img2)))
    plt.title(' merge rgb hist seg index')
    plt.show()

    # 利用灰度图分层
    '''
    4. 输入灰度图,对灰度图处理hist分段,利用灰度图的hist分段,各通道求均值
    '''
    gray = np.mean(img, axis=2)
    index, gray2 = hist_seg(gray, filter=0)

    min_index = sorted(index)
    print('final min index :', min_index)
    min_index.append(255)
    img2 = img.copy()
    for k in range(len(min_index)):
        if k == 0:
            mask = img2 < min_index[k]
        else:
            mask = np.logical_and((img2 < min_index[k]), (img2 > min_index[k - 1]))
        #img2[mask] = np.mean(img2[mask], axis=0)
        img2[..., 0][mask[..., 0]] = np.mean(img2[..., 0][mask[..., 0]])
        img2[..., 1][mask[..., 1]] = np.mean(img2[..., 1][mask[..., 1]])
        img2[..., 2][mask[..., 2]] = np.mean(img2[..., 2][mask[..., 2]])
    plt.figure()
    plt.imshow(np.hstack((img, img2)))
    plt.title(' use gray hist seg')
    plt.show()



你可能感兴趣的:(scipy,图像处理算法,计算机视觉)