【高等数学】双元法:求解不定积分的巧妙方法

文章目录

    • 双元法求解不定积分
      • 1.双元基本概念
      • 2.双元法的三个基本公式
        • (1)公式1
        • (2)公式2
        • (3)公式3
      • 3.基础操作示例
        • No.1
        • No.2
        • No.3
      • 4.根式示例
        • No.1
        • No.2
      • 5.指数示例
        • No.1
        • No.2
      • 6.三角函数示例
        • No.1
        • No.2

双元法求解不定积分

本方法是一种新颖,基于微分公式,求解迅速的积分方法。

说明:本方法为虚调子大佬原创。本文仅作一些整理和证明。

另外,以下所有不定积分均省略常数C。

1.双元基本概念

使用双元法之前,首先需要有双元,不妨记为 x , y x,y x,y

满足平方差或者平方和为常数,也即: x d x ± y d y = 0 xdx\pm ydy=0 xdx±ydy=0

2.双元法的三个基本公式

本节内容的前置知识是微分的运算法则。

(1)公式1

∫ d x y = { arctan ⁡ x y , 当 x d x + y d y = 0 ln ⁡ ∣ x + y ∣ , 当 x d x − y d y = 0 \int \frac{dx}{y}= \left\{ \begin{aligned} &\arctan \frac{x}{y},当xdx+ydy=0\\ &\ln|x+y|,当xdx-ydy=0 \end{aligned} \right. ydx= arctanyx,xdx+ydy=0lnx+y,xdxydy=0

[证明]:

  • 先证明 x d x + y d y = 0 xdx+ydy=0 xdx+ydy=0时公式成立,

考虑:
d ( x y ) = y d x − x d y y 2 d(\frac{x}{y})=\frac{ydx-xdy}{y^2} d(yx)=y2ydxxdy
x d x + y d y = 0 xdx+ydy=0 xdx+ydy=0变形代入得:
d ( x y ) = y d x + x ⋅ x d x y y 2 = ( x 2 + y 2 ) d x y 3 \begin{aligned} d(\frac{x}{y})&=\frac{ydx+x\cdot \frac{xdx}{y}}{y^2}\\ &=\frac{(x^2+y^2)dx}{y^3} \end{aligned} d(yx)=y2ydx+xyxdx=y3(x2+y2)dx
得到:
d x = y 3 x 2 + y 2 d ( x y ) dx=\frac{y^3}{x^2+y^2} d(\frac x y) dx=x2+y2y3d(yx)
因此:
∫ d x y = ∫ y 2 x 2 + y 2 d ( x y ) = ∫ 1 ( x y ) 2 + 1 d ( x y ) = arctan ⁡ x y + C \begin{aligned} \int\frac{dx}{y}&=\int \frac{y^2}{x^2+y^2}d(\frac{x}{y})\\ &=\int \frac{1}{(\frac{x}{y})^2+1}d(\frac{x}{y})\\ &=\arctan\frac x y+C \end{aligned} ydx=x2+y2y2d(yx)=(yx)2+11d(yx)=arctanyx+C

  • 以下证明 x d x − y d y = 0 xdx-ydy=0 xdxydy=0公式成立,

考虑:
d ( x + y ) = d x + d y = d x + x y d x = x + y y d x d(x+y)=dx+dy=dx+\frac{x}{y}dx=\frac{x+y}{y}dx d(x+y)=dx+dy=dx+yxdx=yx+ydx
代入原式得:
∫ d x y = d ( x + y ) x + y = ln ⁡ ∣ x + y ∣ \begin{aligned} \int\frac{dx}{y}&=\frac{d(x+y)}{x+y}\\ &=\ln|x+y| \end{aligned} ydx=x+yd(x+y)=lnx+y

(2)公式2

∫ d x y 3 = 1 y 2 ± x 2 ⋅ x y \int\frac{dx}{y^3}=\frac{1}{y^2\pm x^2}\cdot\frac x y y3dx=y2±x21yx

式中, y 2 ± x 2 y^2\pm x^2 y2±x2即平方和或差,是常数。

[证明]:

证明 x d x + y d y = 0 xdx+ydy=0 xdx+ydy=0时成立即可,另一种情况同理可证

同上可得:
d x = y 3 x 2 + y 2 d ( x y ) dx=\frac{y^3}{x^2+y^2} d(\frac x y) dx=x2+y2y3d(yx)
因此:
∫ d x y 3 = 1 x 2 + y 2 ∫ d ( y x ) = 1 y 2 + x 2 ⋅ x y \int\frac{dx}{y^3}=\frac{1}{x^2+y^2}\int d(\frac y x)=\frac{1}{y^2+ x^2}\cdot\frac x y y3dx=x2+y21d(xy)=y2+x21yx

(3)公式3

∫ y d x = 1 2 x y + y 2 ± x 2 2 ∫ d x y \int ydx=\frac{1}{2}xy+\frac{y^2\pm x^2}{2}\int\frac{dx}{y} ydx=21xy+2y2±x2ydx

[证明]: 考虑分部积分法,证明 x d x − y d y = 0 xdx-ydy=0 xdxydy=0的情形,

有:
∫ y d x = x y − ∫ x d y = x y − ∫ x 2 y d x = x y + ∫ y 2 − x 2 − y 2 y d x = x y + ( y 2 − x 2 ) ∫ d x y − ∫ y d x \begin{aligned} \int ydx &=xy-\int xdy\\ &=xy-\int\frac{x^2}{y}dx\\ &=xy+\int\frac{y^2-x^2-y^2}{y}dx\\ &=xy+(y^2-x^2)\int \frac {dx} y-\int ydx \end{aligned} ydx=xyxdy=xyyx2dx=xy+yy2x2y2dx=xy+(y2x2)ydxydx
A = ∫ y d x A=\int ydx A=ydx,立即可得:
A = 1 2 x y + y 2 − x 2 2 ∫ d x y A=\frac{1}{2}xy+\frac{y^2- x^2}{2}\int\frac{dx}{y} A=21xy+2y2x2ydx
另一种情形同理可证,略。

3.基础操作示例

No.1

求: ∫ x 2 + a 2 d x \int \sqrt{x^2+a^2}dx x2+a2 dx

[解]: y = x 2 + a 2 , y 2 − x 2 = a 2 , y d y = x d x y=\sqrt{x^2+a^2},y^2-x^2=a^2,ydy=xdx y=x2+a2 ,y2x2=a2,ydy=xdx

于是,原式 = ∫ y d x =\int ydx =ydx

根据公式3:
∫ y d x = 1 2 x y + y 2 − x 2 2 ∫ d x y \int ydx=\frac{1}{2}xy+\frac{y^2-x^2}{2}\int\frac{dx}{y} ydx=21xy+2y2x2ydx
根据公式1,有:
∫ d x y = ln ⁡ ∣ x + y ∣ \int \frac{dx}{y}=\ln|x+y| ydx=lnx+y
于是,
∫ x 2 + a 2 d x = 1 2 x y + y 2 − x 2 2 ∫ d x y = 1 2 x x 2 + a 2 + a 2 2 ln ⁡ ∣ x + x 2 + a 2 ∣ \begin{aligned} \int \sqrt{x^2+a^2}dx&=\frac{1}{2}xy+\frac{y^2-x^2}{2}\int\frac{dx}{y}\\ &=\frac{1}{2}x\sqrt {x^2+a^2}+\frac{a^2}{2}\ln|x+\sqrt{x^2+a^2}| \end{aligned} x2+a2 dx=21xy+2y2x2ydx=21xx2+a2 +2a2lnx+x2+a2

No.2

∫ x 2 x 2 − 1 d x \int\frac{x^2}{\sqrt{x^2-1}}dx x21 x2dx

[解]:
∫ x 2 x 2 − 1 d x = x d ( x 2 − 1 ) \int\frac{x^2}{\sqrt{x^2-1}}dx={x}d(\sqrt{x^2-1}) x21 x2dx=xd(x21 )
y = x 2 − 1 y=\sqrt{x^2-1} y=x21 ,有: x 2 − y 2 = 1 , y d y = x d x x^2-y^2=1,ydy=xdx x2y2=1,ydy=xdx

于是:
∫ x d y = 1 2 x y + x 2 − y 2 2 ln ⁡ ∣ x + y ∣ \int xdy=\frac{1}{2}xy+\frac{x^2-y^2}{2}\ln|x+y| xdy=21xy+2x2y2lnx+y
即:
∫ x 2 x 2 − 1 d x = 1 2 x x 2 − 1 + 1 2 ln ⁡ ∣ x + x 2 − 1 ∣ \int\frac{x^2}{\sqrt{x^2-1}}dx=\frac{1}{2}x\sqrt{x^2-1}+\frac{1}{2}\ln|x+\sqrt{x^2-1}| x21 x2dx=21xx21 +21lnx+x21

No.3

求: ∫ d x x 2 + a 2 \int \frac{dx}{\sqrt{x^2+a^2}} x2+a2 dx

[解]: y = x 2 + a 2 , y 2 − x 2 = a 2 , y d y = x d x y=x^2+a^2,y^2-x^2=a^2,ydy=xdx y=x2+a2,y2x2=a2,ydy=xdx

由公式1,得:
∫ d x x 2 + a 2 = ∫ d x y = ln ⁡ ∣ x + y ∣ = ln ⁡ ∣ x + x 2 + a 2 ∣ \begin{aligned} \int \frac{dx}{\sqrt{x^2+a^2}}&=\int \frac{dx}{y}\\ &=\ln|x+y|\\ &=\ln|x+\sqrt{x^2+a^2}| \end{aligned} x2+a2 dx=ydx=lnx+y=lnx+x2+a2

4.根式示例

No.1

求: ∫ x − a x − b d x \int \sqrt{\frac{x-a}{x-b}}dx xbxa dx

[解]: p = x − a , q = x − b p=\sqrt{x-a},q=\sqrt{x-b} p=xa ,q=xb

有: p 2 + a = q 2 + b = x p^2+a=q^2+b=x p2+a=q2+b=x

所以:
∫ x − a x − b d x = ∫ p q ⋅ 2 q d q = 2 ∫ p d q = 2 ( 1 2 p q + p 2 − q 2 2 ∫ d q p ) = p q + ( b − a ) ln ⁡ ∣ p + q ∣ = ( x − a ) ( x − b ) + ( b − a ) ln ⁡ ∣ x − a + x − b ∣ \begin{aligned} \int \sqrt{\frac{x-a}{x-b}}dx&=\int\frac{p}{q}\cdot2qdq\\ &=2\int p dq\\ &=2(\frac{1}{2}pq+\frac{p^2-q^2}{2}\int\frac{dq}{p})\\ &=pq+{(b-a)}\ln|p+q|\\ &=\sqrt{(x-a)(x-b)}+(b-a)\ln|\sqrt{x-a}+\sqrt{x-b}| \end{aligned} xbxa dx=qp2qdq=2pdq=2(21pq+2p2q2pdq)=pq+(ba)lnp+q=(xa)(xb) +(ba)lnxa +xb
为了不改变定义域,改写为:
∫ x − a x − b d x = ( x − a ) ( x − b ) + b − a 2 ln ⁡ ∣ 2 x − a − b + ( x − a ) ( x − b ) ∣ \int \sqrt{\frac{x-a}{x-b}}dx=\sqrt{(x-a)(x-b)}+\frac{b-a}2\ln|2x-a-b+\sqrt{(x-a)(x-b)}| xbxa dx=(xa)(xb) +2baln∣2xab+(xa)(xb)

No.2

求: ∫ x d x x 2 + 2 x + 3 d x \int\frac{xdx}{\sqrt{x^2+2x+3}}dx x2+2x+3 xdxdx

[解]: 不妨令 m = x + 1 , n = ( x + 1 ) 2 + 2 m=x+1,n=\sqrt{(x+1)^2+2} m=x+1,n=(x+1)2+2

有: n 2 − m 2 = 2 , n d n = m d m n^2-m^2=2,ndn=mdm n2m2=2,ndn=mdm

于是:
∫ x d x x 2 + 2 x + 3 d x = ∫ ( m − 1 ) d m n = ∫ m d m n − ∫ d m n \begin{aligned} \int\frac{xdx}{\sqrt{x^2+2x+3}}dx&=\int\frac{(m-1)dm}{n}\\ &=\int \frac{mdm}{n}-\int \frac{dm}{n} \end{aligned} x2+2x+3 xdxdx=n(m1)dm=nmdmndm
考虑:
∫ m d m n = 1 2 ∫ d ( m 2 ) n = 1 2 ⋅ m 2 n + ∫ m 2 n 2 d n = m 2 2 n + ∫ n 2 − 2 n 2 d n = m 2 2 n + n + 2 n \begin{aligned}\int \frac{mdm}{n}&=\frac{1}{2}\int\frac{d(m^2)}{n}\\&=\frac 1 2\cdot \frac{m^2}{n}+\int\frac{m^2}{n^2}dn\\&=\frac{m^2}{2n}+\int{\frac{n^2-2}{n^2}}dn\\&=\frac{m^2}{2n}+n+\frac{2}{n}\end{aligned} nmdm=21nd(m2)=21nm2+n2m2dn=2nm2+n2n22dn=2nm2+n+n2

而:
∫ d m n = ln ⁡ ∣ m + n ∣ \int \frac{dm}{n}=\ln|m+n| ndm=lnm+n
所以,
∫ x d x x 2 + 2 x + 3 d x = m 2 2 n + n + 2 n − ln ⁡ ∣ m + n ∣ = ( x + 1 ) 2 2 x 2 + 2 x + 3 + x 2 + 2 x + 3 + 2 x 2 + 2 x + 3 + ln ⁡ ∣ m + n ∣ \begin{aligned}\int\frac{xdx}{\sqrt{x^2+2x+3}}dx&=\frac{m^2}{2n}+n+\frac{2}{n}-\ln|m+n|\\&=\frac{(x+1)^2}{2\sqrt{x^2+2x+3}}+\sqrt{x^2+2x+3}+\frac{2}{\sqrt{x^2+2x+3}}+\ln|m+n|\end{aligned} x2+2x+3 xdxdx=2nm2+n+n2lnm+n=2x2+2x+3 (x+1)2+x2+2x+3 +x2+2x+3 2+lnm+n

5.指数示例

No.1

求: ∫ e x − 1 e x + 1 d x \int \sqrt\frac{e^x-1}{e^x+1}dx ex+1ex1 dx

[解]: p = e x , q = e 2 x − 1 p=e^x,q=\sqrt{e^{2x}-1} p=ex,q=e2x1

于是: p 2 − q 2 = 1 , p d p = q d p , d p = p d x p^2-q^2=1,pdp=qdp,dp=pdx p2q2=1,pdp=qdp,dp=pdx
∫ e x − 1 e x + 1 d x = ∫ p − 1 q d p p = ∫ d p q − ∫ d p p q = ∫ d p q − ∫ d q p 2 = ∫ d p q − ∫ d q q 2 + 1 = ln ⁡ ∣ p + q ∣ + arctan ⁡ q = ln ⁡ ∣ e x + e 2 x − 1 ∣ + arctan ⁡ e 2 x − 1 \begin{aligned}\int \sqrt\frac{e^x-1}{e^x+1}dx&=\int\frac{p-1}{q}\frac{dp}{p}\\&=\int\frac{dp}{q}-\int\frac{dp}{pq}\\&=\int\frac{dp}{q}-\int \frac{dq}{p^2}\\&=\int\frac{dp}{q}-\int \frac{dq}{q^2+1}\\&=\ln|p+q|+\arctan q\\&=\ln|e^x+\sqrt{e^{2x}-1}|+\arctan {\sqrt{e^{2x}-1}}\end{aligned} ex+1ex1 dx=qp1pdp=qdppqdp=qdpp2dq=qdpq2+1dq=lnp+q+arctanq=lnex+e2x1 +arctane2x1

No.2

求: ∫ d x 1 + e x + 1 − e x \int \frac{dx}{\sqrt{1+e^x}+\sqrt{1-e^x}} 1+ex +1ex dx

[解]: p = 1 + e x , q = 1 − e x , r = e x 2 p=\sqrt{1+e^x},q=\sqrt{1-e^x},r=e^{\frac x 2} p=1+ex ,q=1ex ,r=e2x

于是: p 2 − 1 = 1 − q 2 = r 2 = e x , 2 r d r = r 2 d x p^2-1=1-q^2=r^2=e^x,2rdr=r^2dx p21=1q2=r2=ex,2rdr=r2dx

所以:
∫ d x 1 + e x + 1 − e x = ∫ 1 p + q ⋅ 2 d r r = ∫ p − q 2 r 2 ⋅ d r r = q − p 2 r 2 + ∫ d p − d q 2 r 2      [ 分部积分 ] = q − p 2 r 2 + 1 2 ∫ d p r 2 − 1 2 ∫ d q r 2 = q − p 2 r 2 + 1 2 ∫ d p p 2 − 1 − 1 2 ∫ d q 1 − q 2 = q − p 2 r 2 + 1 4 ( ln ⁡ ∣ p − 1 p + 1 ∣ + ln ⁡ ∣ q − 1 q + 1 ∣ ) = 1 − e x − 1 + e x 2 e x + 1 4 ln ⁡ ∣ 1 + e x − 1 1 + e x + 1 ∣ + 1 4 ln ⁡ ∣ 1 − e x − 1 1 − e x + 1 ∣ \begin{aligned}\int \frac{dx}{\sqrt{1+e^x}+\sqrt{1-e^x}}&=\int\frac{1}{p+q}\cdot\frac{2dr}{r}\\&=\int\frac{p-q}{2r^2}\cdot\frac{dr}{r}\\&=\frac{q-p}{2r^2}+\int\frac{dp-dq}{2r^2}~~~~[分部积分]\\&=\frac{q-p}{2r^2}+\frac 1 2\int\frac{dp}{r^2}-\frac 1 2\int\frac{dq}{r^2}\\&=\frac{q-p}{2r^2}+\frac 1 2\int\frac{dp}{p^2-1}-\frac 1 2\int\frac{dq}{1-q^2}\\&=\frac{q-p}{2r^2}+\frac{1}4(\ln|\frac{p-1}{p+1}|+\ln|\frac{q-1}{q+1}|)\\&=\frac{\sqrt{1-e^x}-\sqrt{1+e^x}}{2e^x}+\frac{1}{4}\ln|\frac{\sqrt{1+e^x}-1}{\sqrt{1+e^x}+1}|+\frac{1}{4}\ln|\frac{\sqrt{1-e^x}-1}{\sqrt{1-e^x}+1}|\\\end{aligned} 1+ex +1ex dx=p+q1r2dr=2r2pqrdr=2r2qp+2r2dpdq    [分部积分]=2r2qp+21r2dp21r2dq=2r2qp+21p21dp211q2dq=2r2qp+41(lnp+1p1+lnq+1q1)=2ex1ex 1+ex +41ln1+ex +11+ex 1+41ln1ex +11ex 1

6.三角函数示例

No.1

求: ∫ 1 − tan ⁡ x 1 + tan ⁡ x d x \int \frac{1-\tan x}{1+\tan x}dx 1+tanx1tanxdx

[解]: 先考虑切化弦,然后令 m = cos ⁡ x , n = sin ⁡ x m=\cos x,n=\sin x m=cosx,n=sinx

于是: m 2 + n 2 = 1 , m d m + n d n = 0 m^2+n^2=1,mdm+ndn=0 m2+n2=1,mdm+ndn=0

所以:
∫ 1 − tan ⁡ x 1 + tan ⁡ x d x = ∫ cos ⁡ x − sin ⁡ x cos ⁡ x + sin ⁡ x d x = ∫ m − n m + n ⋅ d n m = ∫ m d n + m d m m + n ⋅ 1 m = ∫ d m + d n m + n = ln ⁡ ∣ m + n ∣ = ln ⁡ ∣ sin ⁡ x + cos ⁡ x ∣ \begin{aligned}\int \frac{1-\tan x}{1+\tan x}dx&=\int \frac{\cos x-\sin x}{\cos x+\sin x}dx\\&=\int\frac{m-n}{m+n}\cdot \frac{dn}{m}\\&=\int\frac{mdn+mdm}{m+n}\cdot \frac{1}{m}\\&=\int\frac{dm+dn}{m+n}\\&=\ln|m+n|\\&=\ln|\sin x+\cos x|\end{aligned} 1+tanx1tanxdx=cosx+sinxcosxsinxdx=m+nmnmdn=m+nmdn+mdmm1=m+ndm+dn=lnm+n=lnsinx+cosx

No.2

求: ∫ d x tan ⁡ x + sin ⁡ x \int\frac{dx}{\tan x+\sin x} tanx+sinxdx

[解]: m = sin ⁡ x , n = cos ⁡ x m=\sin x,n=\cos x m=sinx,n=cosx

于是:
∫ d x tan ⁡ x + sin ⁡ x = ∫ 1 m n + m ⋅ d m n = ∫ d m m ( 1 + n ) = ∫ d m ( 1 − n ) m 3 = n − 1 2 m 2 + 1 2 ∫ d n m 2 = n − 1 2 m 2 + 1 2 ∫ d n 1 − n 2 = n − 1 2 m 2 − 1 4 ln ⁡ ∣ n − 1 n + 1 ∣ = − 1 2 ( 1 + cos ⁡ x ) − 1 4 ln ⁡ ∣ cos ⁡ x − 1 cos ⁡ x + 1 ∣ \begin{aligned}\int\frac{dx}{\tan x+\sin x}&=\int \frac{1}{\frac{m}{n}+m}\cdot \frac{dm}{n}\\&=\int\frac{dm}{m(1+n)}\\&=\int \frac{dm(1-n)}{m^3}\\&=\frac{n-1}{2m^2}+\frac 1 2\int\frac{dn}{m^2}\\&=\frac{n-1}{2m^2}+\frac 1 2\int\frac{dn}{1-n^2}\\&=\frac{n-1}{2m^2}-\frac 1 4\ln|\frac{n-1}{n+1}|\\&=-\frac{1}{2(1+\cos x)}-\frac 1 4 \ln|\frac{\cos x-1}{\cos x+1}|\end{aligned} tanx+sinxdx=nm+m1ndm=m(1+n)dm=m3dm(1n)=2m2n1+21m2dn=2m2n1+211n2dn=2m2n141lnn+1n1=2(1+cosx)141lncosx+1cosx1

你可能感兴趣的:(高等数学,算法)