本方法是一种新颖,基于微分公式,求解迅速的积分方法。
说明:本方法为虚调子大佬原创。本文仅作一些整理和证明。
另外,以下所有不定积分均省略常数C。
使用双元法之前,首先需要有双元,不妨记为 x , y x,y x,y,
且满足平方差或者平方和为常数,也即: x d x ± y d y = 0 xdx\pm ydy=0 xdx±ydy=0
本节内容的前置知识是微分的运算法则。
∫ d x y = { arctan x y , 当 x d x + y d y = 0 ln ∣ x + y ∣ , 当 x d x − y d y = 0 \int \frac{dx}{y}= \left\{ \begin{aligned} &\arctan \frac{x}{y},当xdx+ydy=0\\ &\ln|x+y|,当xdx-ydy=0 \end{aligned} \right. ∫ydx=⎩ ⎨ ⎧arctanyx,当xdx+ydy=0ln∣x+y∣,当xdx−ydy=0
[证明]:
考虑:
d ( x y ) = y d x − x d y y 2 d(\frac{x}{y})=\frac{ydx-xdy}{y^2} d(yx)=y2ydx−xdy
将 x d x + y d y = 0 xdx+ydy=0 xdx+ydy=0变形代入得:
d ( x y ) = y d x + x ⋅ x d x y y 2 = ( x 2 + y 2 ) d x y 3 \begin{aligned} d(\frac{x}{y})&=\frac{ydx+x\cdot \frac{xdx}{y}}{y^2}\\ &=\frac{(x^2+y^2)dx}{y^3} \end{aligned} d(yx)=y2ydx+x⋅yxdx=y3(x2+y2)dx
得到:
d x = y 3 x 2 + y 2 d ( x y ) dx=\frac{y^3}{x^2+y^2} d(\frac x y) dx=x2+y2y3d(yx)
因此:
∫ d x y = ∫ y 2 x 2 + y 2 d ( x y ) = ∫ 1 ( x y ) 2 + 1 d ( x y ) = arctan x y + C \begin{aligned} \int\frac{dx}{y}&=\int \frac{y^2}{x^2+y^2}d(\frac{x}{y})\\ &=\int \frac{1}{(\frac{x}{y})^2+1}d(\frac{x}{y})\\ &=\arctan\frac x y+C \end{aligned} ∫ydx=∫x2+y2y2d(yx)=∫(yx)2+11d(yx)=arctanyx+C
考虑:
d ( x + y ) = d x + d y = d x + x y d x = x + y y d x d(x+y)=dx+dy=dx+\frac{x}{y}dx=\frac{x+y}{y}dx d(x+y)=dx+dy=dx+yxdx=yx+ydx
代入原式得:
∫ d x y = d ( x + y ) x + y = ln ∣ x + y ∣ \begin{aligned} \int\frac{dx}{y}&=\frac{d(x+y)}{x+y}\\ &=\ln|x+y| \end{aligned} ∫ydx=x+yd(x+y)=ln∣x+y∣
∫ d x y 3 = 1 y 2 ± x 2 ⋅ x y \int\frac{dx}{y^3}=\frac{1}{y^2\pm x^2}\cdot\frac x y ∫y3dx=y2±x21⋅yx
式中, y 2 ± x 2 y^2\pm x^2 y2±x2即平方和或差,是常数。
[证明]:
证明 x d x + y d y = 0 xdx+ydy=0 xdx+ydy=0时成立即可,另一种情况同理可证
同上可得:
d x = y 3 x 2 + y 2 d ( x y ) dx=\frac{y^3}{x^2+y^2} d(\frac x y) dx=x2+y2y3d(yx)
因此:
∫ d x y 3 = 1 x 2 + y 2 ∫ d ( y x ) = 1 y 2 + x 2 ⋅ x y \int\frac{dx}{y^3}=\frac{1}{x^2+y^2}\int d(\frac y x)=\frac{1}{y^2+ x^2}\cdot\frac x y ∫y3dx=x2+y21∫d(xy)=y2+x21⋅yx
∫ y d x = 1 2 x y + y 2 ± x 2 2 ∫ d x y \int ydx=\frac{1}{2}xy+\frac{y^2\pm x^2}{2}\int\frac{dx}{y} ∫ydx=21xy+2y2±x2∫ydx
[证明]: 考虑分部积分法,证明 x d x − y d y = 0 xdx-ydy=0 xdx−ydy=0的情形,
有:
∫ y d x = x y − ∫ x d y = x y − ∫ x 2 y d x = x y + ∫ y 2 − x 2 − y 2 y d x = x y + ( y 2 − x 2 ) ∫ d x y − ∫ y d x \begin{aligned} \int ydx &=xy-\int xdy\\ &=xy-\int\frac{x^2}{y}dx\\ &=xy+\int\frac{y^2-x^2-y^2}{y}dx\\ &=xy+(y^2-x^2)\int \frac {dx} y-\int ydx \end{aligned} ∫ydx=xy−∫xdy=xy−∫yx2dx=xy+∫yy2−x2−y2dx=xy+(y2−x2)∫ydx−∫ydx
令 A = ∫ y d x A=\int ydx A=∫ydx,立即可得:
A = 1 2 x y + y 2 − x 2 2 ∫ d x y A=\frac{1}{2}xy+\frac{y^2- x^2}{2}\int\frac{dx}{y} A=21xy+2y2−x2∫ydx
另一种情形同理可证,略。
求: ∫ x 2 + a 2 d x \int \sqrt{x^2+a^2}dx ∫x2+a2dx
[解]: 令 y = x 2 + a 2 , y 2 − x 2 = a 2 , y d y = x d x y=\sqrt{x^2+a^2},y^2-x^2=a^2,ydy=xdx y=x2+a2,y2−x2=a2,ydy=xdx
于是,原式 = ∫ y d x =\int ydx =∫ydx
根据公式3:
∫ y d x = 1 2 x y + y 2 − x 2 2 ∫ d x y \int ydx=\frac{1}{2}xy+\frac{y^2-x^2}{2}\int\frac{dx}{y} ∫ydx=21xy+2y2−x2∫ydx
根据公式1,有:
∫ d x y = ln ∣ x + y ∣ \int \frac{dx}{y}=\ln|x+y| ∫ydx=ln∣x+y∣
于是,
∫ x 2 + a 2 d x = 1 2 x y + y 2 − x 2 2 ∫ d x y = 1 2 x x 2 + a 2 + a 2 2 ln ∣ x + x 2 + a 2 ∣ \begin{aligned} \int \sqrt{x^2+a^2}dx&=\frac{1}{2}xy+\frac{y^2-x^2}{2}\int\frac{dx}{y}\\ &=\frac{1}{2}x\sqrt {x^2+a^2}+\frac{a^2}{2}\ln|x+\sqrt{x^2+a^2}| \end{aligned} ∫x2+a2dx=21xy+2y2−x2∫ydx=21xx2+a2+2a2ln∣x+x2+a2∣
求 ∫ x 2 x 2 − 1 d x \int\frac{x^2}{\sqrt{x^2-1}}dx ∫x2−1x2dx
[解]:
∫ x 2 x 2 − 1 d x = x d ( x 2 − 1 ) \int\frac{x^2}{\sqrt{x^2-1}}dx={x}d(\sqrt{x^2-1}) ∫x2−1x2dx=xd(x2−1)
令 y = x 2 − 1 y=\sqrt{x^2-1} y=x2−1,有: x 2 − y 2 = 1 , y d y = x d x x^2-y^2=1,ydy=xdx x2−y2=1,ydy=xdx
于是:
∫ x d y = 1 2 x y + x 2 − y 2 2 ln ∣ x + y ∣ \int xdy=\frac{1}{2}xy+\frac{x^2-y^2}{2}\ln|x+y| ∫xdy=21xy+2x2−y2ln∣x+y∣
即:
∫ x 2 x 2 − 1 d x = 1 2 x x 2 − 1 + 1 2 ln ∣ x + x 2 − 1 ∣ \int\frac{x^2}{\sqrt{x^2-1}}dx=\frac{1}{2}x\sqrt{x^2-1}+\frac{1}{2}\ln|x+\sqrt{x^2-1}| ∫x2−1x2dx=21xx2−1+21ln∣x+x2−1∣
求: ∫ d x x 2 + a 2 \int \frac{dx}{\sqrt{x^2+a^2}} ∫x2+a2dx
[解]: 令 y = x 2 + a 2 , y 2 − x 2 = a 2 , y d y = x d x y=x^2+a^2,y^2-x^2=a^2,ydy=xdx y=x2+a2,y2−x2=a2,ydy=xdx
由公式1,得:
∫ d x x 2 + a 2 = ∫ d x y = ln ∣ x + y ∣ = ln ∣ x + x 2 + a 2 ∣ \begin{aligned} \int \frac{dx}{\sqrt{x^2+a^2}}&=\int \frac{dx}{y}\\ &=\ln|x+y|\\ &=\ln|x+\sqrt{x^2+a^2}| \end{aligned} ∫x2+a2dx=∫ydx=ln∣x+y∣=ln∣x+x2+a2∣
求: ∫ x − a x − b d x \int \sqrt{\frac{x-a}{x-b}}dx ∫x−bx−adx
[解]: 令 p = x − a , q = x − b p=\sqrt{x-a},q=\sqrt{x-b} p=x−a,q=x−b
有: p 2 + a = q 2 + b = x p^2+a=q^2+b=x p2+a=q2+b=x
所以:
∫ x − a x − b d x = ∫ p q ⋅ 2 q d q = 2 ∫ p d q = 2 ( 1 2 p q + p 2 − q 2 2 ∫ d q p ) = p q + ( b − a ) ln ∣ p + q ∣ = ( x − a ) ( x − b ) + ( b − a ) ln ∣ x − a + x − b ∣ \begin{aligned} \int \sqrt{\frac{x-a}{x-b}}dx&=\int\frac{p}{q}\cdot2qdq\\ &=2\int p dq\\ &=2(\frac{1}{2}pq+\frac{p^2-q^2}{2}\int\frac{dq}{p})\\ &=pq+{(b-a)}\ln|p+q|\\ &=\sqrt{(x-a)(x-b)}+(b-a)\ln|\sqrt{x-a}+\sqrt{x-b}| \end{aligned} ∫x−bx−adx=∫qp⋅2qdq=2∫pdq=2(21pq+2p2−q2∫pdq)=pq+(b−a)ln∣p+q∣=(x−a)(x−b)+(b−a)ln∣x−a+x−b∣
为了不改变定义域,改写为:
∫ x − a x − b d x = ( x − a ) ( x − b ) + b − a 2 ln ∣ 2 x − a − b + ( x − a ) ( x − b ) ∣ \int \sqrt{\frac{x-a}{x-b}}dx=\sqrt{(x-a)(x-b)}+\frac{b-a}2\ln|2x-a-b+\sqrt{(x-a)(x-b)}| ∫x−bx−adx=(x−a)(x−b)+2b−aln∣2x−a−b+(x−a)(x−b)∣
求: ∫ x d x x 2 + 2 x + 3 d x \int\frac{xdx}{\sqrt{x^2+2x+3}}dx ∫x2+2x+3xdxdx
[解]: 不妨令 m = x + 1 , n = ( x + 1 ) 2 + 2 m=x+1,n=\sqrt{(x+1)^2+2} m=x+1,n=(x+1)2+2
有: n 2 − m 2 = 2 , n d n = m d m n^2-m^2=2,ndn=mdm n2−m2=2,ndn=mdm
于是:
∫ x d x x 2 + 2 x + 3 d x = ∫ ( m − 1 ) d m n = ∫ m d m n − ∫ d m n \begin{aligned} \int\frac{xdx}{\sqrt{x^2+2x+3}}dx&=\int\frac{(m-1)dm}{n}\\ &=\int \frac{mdm}{n}-\int \frac{dm}{n} \end{aligned} ∫x2+2x+3xdxdx=∫n(m−1)dm=∫nmdm−∫ndm
考虑:
∫ m d m n = 1 2 ∫ d ( m 2 ) n = 1 2 ⋅ m 2 n + ∫ m 2 n 2 d n = m 2 2 n + ∫ n 2 − 2 n 2 d n = m 2 2 n + n + 2 n \begin{aligned}\int \frac{mdm}{n}&=\frac{1}{2}\int\frac{d(m^2)}{n}\\&=\frac 1 2\cdot \frac{m^2}{n}+\int\frac{m^2}{n^2}dn\\&=\frac{m^2}{2n}+\int{\frac{n^2-2}{n^2}}dn\\&=\frac{m^2}{2n}+n+\frac{2}{n}\end{aligned} ∫nmdm=21∫nd(m2)=21⋅nm2+∫n2m2dn=2nm2+∫n2n2−2dn=2nm2+n+n2
而:
∫ d m n = ln ∣ m + n ∣ \int \frac{dm}{n}=\ln|m+n| ∫ndm=ln∣m+n∣
所以,
∫ x d x x 2 + 2 x + 3 d x = m 2 2 n + n + 2 n − ln ∣ m + n ∣ = ( x + 1 ) 2 2 x 2 + 2 x + 3 + x 2 + 2 x + 3 + 2 x 2 + 2 x + 3 + ln ∣ m + n ∣ \begin{aligned}\int\frac{xdx}{\sqrt{x^2+2x+3}}dx&=\frac{m^2}{2n}+n+\frac{2}{n}-\ln|m+n|\\&=\frac{(x+1)^2}{2\sqrt{x^2+2x+3}}+\sqrt{x^2+2x+3}+\frac{2}{\sqrt{x^2+2x+3}}+\ln|m+n|\end{aligned} ∫x2+2x+3xdxdx=2nm2+n+n2−ln∣m+n∣=2x2+2x+3(x+1)2+x2+2x+3+x2+2x+32+ln∣m+n∣
求: ∫ e x − 1 e x + 1 d x \int \sqrt\frac{e^x-1}{e^x+1}dx ∫ex+1ex−1dx
[解]: 令 p = e x , q = e 2 x − 1 p=e^x,q=\sqrt{e^{2x}-1} p=ex,q=e2x−1
于是: p 2 − q 2 = 1 , p d p = q d p , d p = p d x p^2-q^2=1,pdp=qdp,dp=pdx p2−q2=1,pdp=qdp,dp=pdx
∫ e x − 1 e x + 1 d x = ∫ p − 1 q d p p = ∫ d p q − ∫ d p p q = ∫ d p q − ∫ d q p 2 = ∫ d p q − ∫ d q q 2 + 1 = ln ∣ p + q ∣ + arctan q = ln ∣ e x + e 2 x − 1 ∣ + arctan e 2 x − 1 \begin{aligned}\int \sqrt\frac{e^x-1}{e^x+1}dx&=\int\frac{p-1}{q}\frac{dp}{p}\\&=\int\frac{dp}{q}-\int\frac{dp}{pq}\\&=\int\frac{dp}{q}-\int \frac{dq}{p^2}\\&=\int\frac{dp}{q}-\int \frac{dq}{q^2+1}\\&=\ln|p+q|+\arctan q\\&=\ln|e^x+\sqrt{e^{2x}-1}|+\arctan {\sqrt{e^{2x}-1}}\end{aligned} ∫ex+1ex−1dx=∫qp−1pdp=∫qdp−∫pqdp=∫qdp−∫p2dq=∫qdp−∫q2+1dq=ln∣p+q∣+arctanq=ln∣ex+e2x−1∣+arctane2x−1
求: ∫ d x 1 + e x + 1 − e x \int \frac{dx}{\sqrt{1+e^x}+\sqrt{1-e^x}} ∫1+ex+1−exdx
[解]: 令 p = 1 + e x , q = 1 − e x , r = e x 2 p=\sqrt{1+e^x},q=\sqrt{1-e^x},r=e^{\frac x 2} p=1+ex,q=1−ex,r=e2x
于是: p 2 − 1 = 1 − q 2 = r 2 = e x , 2 r d r = r 2 d x p^2-1=1-q^2=r^2=e^x,2rdr=r^2dx p2−1=1−q2=r2=ex,2rdr=r2dx
所以:
∫ d x 1 + e x + 1 − e x = ∫ 1 p + q ⋅ 2 d r r = ∫ p − q 2 r 2 ⋅ d r r = q − p 2 r 2 + ∫ d p − d q 2 r 2 [ 分部积分 ] = q − p 2 r 2 + 1 2 ∫ d p r 2 − 1 2 ∫ d q r 2 = q − p 2 r 2 + 1 2 ∫ d p p 2 − 1 − 1 2 ∫ d q 1 − q 2 = q − p 2 r 2 + 1 4 ( ln ∣ p − 1 p + 1 ∣ + ln ∣ q − 1 q + 1 ∣ ) = 1 − e x − 1 + e x 2 e x + 1 4 ln ∣ 1 + e x − 1 1 + e x + 1 ∣ + 1 4 ln ∣ 1 − e x − 1 1 − e x + 1 ∣ \begin{aligned}\int \frac{dx}{\sqrt{1+e^x}+\sqrt{1-e^x}}&=\int\frac{1}{p+q}\cdot\frac{2dr}{r}\\&=\int\frac{p-q}{2r^2}\cdot\frac{dr}{r}\\&=\frac{q-p}{2r^2}+\int\frac{dp-dq}{2r^2}~~~~[分部积分]\\&=\frac{q-p}{2r^2}+\frac 1 2\int\frac{dp}{r^2}-\frac 1 2\int\frac{dq}{r^2}\\&=\frac{q-p}{2r^2}+\frac 1 2\int\frac{dp}{p^2-1}-\frac 1 2\int\frac{dq}{1-q^2}\\&=\frac{q-p}{2r^2}+\frac{1}4(\ln|\frac{p-1}{p+1}|+\ln|\frac{q-1}{q+1}|)\\&=\frac{\sqrt{1-e^x}-\sqrt{1+e^x}}{2e^x}+\frac{1}{4}\ln|\frac{\sqrt{1+e^x}-1}{\sqrt{1+e^x}+1}|+\frac{1}{4}\ln|\frac{\sqrt{1-e^x}-1}{\sqrt{1-e^x}+1}|\\\end{aligned} ∫1+ex+1−exdx=∫p+q1⋅r2dr=∫2r2p−q⋅rdr=2r2q−p+∫2r2dp−dq [分部积分]=2r2q−p+21∫r2dp−21∫r2dq=2r2q−p+21∫p2−1dp−21∫1−q2dq=2r2q−p+41(ln∣p+1p−1∣+ln∣q+1q−1∣)=2ex1−ex−1+ex+41ln∣1+ex+11+ex−1∣+41ln∣1−ex+11−ex−1∣
求: ∫ 1 − tan x 1 + tan x d x \int \frac{1-\tan x}{1+\tan x}dx ∫1+tanx1−tanxdx
[解]: 先考虑切化弦,然后令 m = cos x , n = sin x m=\cos x,n=\sin x m=cosx,n=sinx
于是: m 2 + n 2 = 1 , m d m + n d n = 0 m^2+n^2=1,mdm+ndn=0 m2+n2=1,mdm+ndn=0
所以:
∫ 1 − tan x 1 + tan x d x = ∫ cos x − sin x cos x + sin x d x = ∫ m − n m + n ⋅ d n m = ∫ m d n + m d m m + n ⋅ 1 m = ∫ d m + d n m + n = ln ∣ m + n ∣ = ln ∣ sin x + cos x ∣ \begin{aligned}\int \frac{1-\tan x}{1+\tan x}dx&=\int \frac{\cos x-\sin x}{\cos x+\sin x}dx\\&=\int\frac{m-n}{m+n}\cdot \frac{dn}{m}\\&=\int\frac{mdn+mdm}{m+n}\cdot \frac{1}{m}\\&=\int\frac{dm+dn}{m+n}\\&=\ln|m+n|\\&=\ln|\sin x+\cos x|\end{aligned} ∫1+tanx1−tanxdx=∫cosx+sinxcosx−sinxdx=∫m+nm−n⋅mdn=∫m+nmdn+mdm⋅m1=∫m+ndm+dn=ln∣m+n∣=ln∣sinx+cosx∣
求: ∫ d x tan x + sin x \int\frac{dx}{\tan x+\sin x} ∫tanx+sinxdx
[解]: 令 m = sin x , n = cos x m=\sin x,n=\cos x m=sinx,n=cosx
于是:
∫ d x tan x + sin x = ∫ 1 m n + m ⋅ d m n = ∫ d m m ( 1 + n ) = ∫ d m ( 1 − n ) m 3 = n − 1 2 m 2 + 1 2 ∫ d n m 2 = n − 1 2 m 2 + 1 2 ∫ d n 1 − n 2 = n − 1 2 m 2 − 1 4 ln ∣ n − 1 n + 1 ∣ = − 1 2 ( 1 + cos x ) − 1 4 ln ∣ cos x − 1 cos x + 1 ∣ \begin{aligned}\int\frac{dx}{\tan x+\sin x}&=\int \frac{1}{\frac{m}{n}+m}\cdot \frac{dm}{n}\\&=\int\frac{dm}{m(1+n)}\\&=\int \frac{dm(1-n)}{m^3}\\&=\frac{n-1}{2m^2}+\frac 1 2\int\frac{dn}{m^2}\\&=\frac{n-1}{2m^2}+\frac 1 2\int\frac{dn}{1-n^2}\\&=\frac{n-1}{2m^2}-\frac 1 4\ln|\frac{n-1}{n+1}|\\&=-\frac{1}{2(1+\cos x)}-\frac 1 4 \ln|\frac{\cos x-1}{\cos x+1}|\end{aligned} ∫tanx+sinxdx=∫nm+m1⋅ndm=∫m(1+n)dm=∫m3dm(1−n)=2m2n−1+21∫m2dn=2m2n−1+21∫1−n2dn=2m2n−1−41ln∣n+1n−1∣=−2(1+cosx)1−41ln∣cosx+1cosx−1∣