彻底理解JAVA动态代理

代理设计模式

定义:为其他对象提供一种代理以控制对这个对象的访问。

代理模式的结构如下图所示。

动态代理使用

java动态代理机制以巧妙的方式实现了代理模式的设计理念。

代理模式示例代码

public interface Subject   

{   

  public void doSomething();   

}   

public class RealSubject implements Subject   

{   

  public void doSomething()   

  {   

    System.out.println( "call doSomething()" );   

  }   

}   

public class ProxyHandler implements InvocationHandler   

{   

  private Object proxied;   

     

  public ProxyHandler( Object proxied )   

  {   

    this.proxied = proxied;   

  }   

     

  public Object invoke( Object proxy, Method method, Object[] args ) throws Throwable   

  {   

    //在转调具体目标对象之前,可以执行一些功能处理



    //转调具体目标对象的方法

    return method.invoke( proxied, args);  

    

    //在转调具体目标对象之后,可以执行一些功能处理

  }    

} 
import java.lang.reflect.InvocationHandler;   

import java.lang.reflect.Method;   

import java.lang.reflect.Proxy;   

import sun.misc.ProxyGenerator;   

import java.io.*;   

public class DynamicProxy   

{   

  public static void main( String args[] )   

  {   

    RealSubject real = new RealSubject();   

    Subject proxySubject = (Subject)Proxy.newProxyInstance(Subject.class.getClassLoader(), 

     new Class[]{Subject.class}, 

     new ProxyHandler(real));

         

    proxySubject.doSomething();

   

    //write proxySubject class binary data to file   

    createProxyClassFile();   

  }   

     

  public static void createProxyClassFile()   

  {   

    String name = "ProxySubject";   

    byte[] data = ProxyGenerator.generateProxyClass( name, new Class[] { Subject.class } );   

    try  

    {   

      FileOutputStream out = new FileOutputStream( name + ".class" );   

      out.write( data );   

      out.close();   

    }   

    catch( Exception e )   

    {   

      e.printStackTrace();   

    }   

  }   

}  

动态代理内部实现

首先来看看类Proxy的代码实现 Proxy的主要静态变量

// 映射表:用于维护类装载器对象到其对应的代理类缓存

private static Map loaderToCache = new WeakHashMap(); 



// 标记:用于标记一个动态代理类正在被创建中

private static Object pendingGenerationMarker = new Object(); 



// 同步表:记录已经被创建的动态代理类类型,主要被方法 isProxyClass 进行相关的判断

private static Map proxyClasses = Collections.synchronizedMap(new WeakHashMap()); 



// 关联的调用处理器引用

protected InvocationHandler h;

Proxy的构造方法

// 由于 Proxy 内部从不直接调用构造函数,所以 private 类型意味着禁止任何调用

private Proxy() {} 



// 由于 Proxy 内部从不直接调用构造函数,所以 protected 意味着只有子类可以调用

protected Proxy(InvocationHandler h) {this.h = h;} 

Proxy静态方法newProxyInstance

public static Object newProxyInstance(ClassLoader loader, Class<?>[]interfaces,InvocationHandler h) throws IllegalArgumentException { 

    // 检查 h 不为空,否则抛异常

    if (h == null) { 

        throw new NullPointerException(); 

    } 



    // 获得与指定类装载器和一组接口相关的代理类类型对象

    Class cl = getProxyClass(loader, interfaces); 



    // 通过反射获取构造函数对象并生成代理类实例

    try { 

        Constructor cons = cl.getConstructor(constructorParams); 

        return (Object) cons.newInstance(new Object[] { h }); 

    } catch (NoSuchMethodException e) { throw new InternalError(e.toString()); 

    } catch (IllegalAccessException e) { throw new InternalError(e.toString()); 

    } catch (InstantiationException e) { throw new InternalError(e.toString()); 

    } catch (InvocationTargetException e) { throw new InternalError(e.toString()); 

    } 

}

ProxygetProxyClass方法调用ProxyGenerator的 generateProxyClass方法产生ProxySubject.class的二进制数据:

public static byte[] generateProxyClass(final String name, Class[] interfaces)

我们可以import sun.misc.ProxyGenerator,调用 generateProxyClass方法产生binary data,然后写入文件,最后通过反编译工具来查看内部实现原理。 反编译后的ProxySubject.java Proxy静态方法newProxyInstance

import java.lang.reflect.*;   

public final class ProxySubject extends Proxy   

    implements Subject   

{   

    private static Method m1;   

    private static Method m0;   

    private static Method m3;   

    private static Method m2;   

    public ProxySubject(InvocationHandler invocationhandler)   

    {   

        super(invocationhandler);   

    }   

    public final boolean equals(Object obj)   

    {   

        try  

        {   

            return ((Boolean)super.h.invoke(this, m1, new Object[] {   

                obj   

            })).booleanValue();   

        }   

        catch(Error _ex) { }   

        catch(Throwable throwable)   

        {   

            throw new UndeclaredThrowableException(throwable);   

        }   

    }   

    public final int hashCode()   

    {   

        try  

        {   

            return ((Integer)super.h.invoke(this, m0, null)).intValue();   

        }   

        catch(Error _ex) { }   

        catch(Throwable throwable)   

        {   

            throw new UndeclaredThrowableException(throwable);   

        }   

    }   

    public final void doSomething()   

    {   

        try  

        {   

            super.h.invoke(this, m3, null);   

            return;   

        }   

        catch(Error _ex) { }   

        catch(Throwable throwable)   

        {   

            throw new UndeclaredThrowableException(throwable);   

        }   

    }   

    public final String toString()   

    {   

        try  

        {   

            return (String)super.h.invoke(this, m2, null);   

        }   

        catch(Error _ex) { }   

        catch(Throwable throwable)   

        {   

            throw new UndeclaredThrowableException(throwable);   

        }   

    }   

    static    

    {   

        try  

        {   

            m1 = Class.forName("java.lang.Object").getMethod("equals", new Class[] {   

                Class.forName("java.lang.Object")   

            });   

            m0 = Class.forName("java.lang.Object").getMethod("hashCode", new Class[0]);   

            m3 = Class.forName("Subject").getMethod("doSomething", new Class[0]);   

            m2 = Class.forName("java.lang.Object").getMethod("toString", new Class[0]);   

        }   

        catch(NoSuchMethodException nosuchmethodexception)   

        {   

            throw new NoSuchMethodError(nosuchmethodexception.getMessage());   

        }   

        catch(ClassNotFoundException classnotfoundexception)   

        {   

            throw new NoClassDefFoundError(classnotfoundexception.getMessage());   

        }   

    }   

}  

ProxyGenerator内部是如何生成class二进制数据,可以参考源代码。

private byte[] generateClassFile() {   

  /*  

   * Record that proxy methods are needed for the hashCode, equals,  

   * and toString methods of java.lang.Object.  This is done before  

   * the methods from the proxy interfaces so that the methods from  

   * java.lang.Object take precedence over duplicate methods in the  

   * proxy interfaces.  

   */  

  addProxyMethod(hashCodeMethod, Object.class);   

  addProxyMethod(equalsMethod, Object.class);   

  addProxyMethod(toStringMethod, Object.class);   

  /*  

   * Now record all of the methods from the proxy interfaces, giving  

   * earlier interfaces precedence over later ones with duplicate  

   * methods.  

   */  

  for (int i = 0; i < interfaces.length; i++) {   

      Method[] methods = interfaces[i].getMethods();   

      for (int j = 0; j < methods.length; j++) {   

    addProxyMethod(methods[j], interfaces[i]);   

      }   

  }   

  /*  

   * For each set of proxy methods with the same signature,  

   * verify that the methods' return types are compatible.  

   */  

  for (List<ProxyMethod> sigmethods : proxyMethods.values()) {   

      checkReturnTypes(sigmethods);   

  }   

  /* ============================================================  

   * Step 2: Assemble FieldInfo and MethodInfo structs for all of  

   * fields and methods in the class we are generating.  

   */  

  try {   

      methods.add(generateConstructor());   

      for (List<ProxyMethod> sigmethods : proxyMethods.values()) {   

    for (ProxyMethod pm : sigmethods) {   

        // add static field for method's Method object   

        fields.add(new FieldInfo(pm.methodFieldName,   

      "Ljava/lang/reflect/Method;",   

       ACC_PRIVATE | ACC_STATIC));   

        // generate code for proxy method and add it   

        methods.add(pm.generateMethod());   

    }   

      }   

      methods.add(generateStaticInitializer());   

  } catch (IOException e) {   

      throw new InternalError("unexpected I/O Exception");   

  }   

  /* ============================================================  

   * Step 3: Write the final class file.  

   */  

  /*  

   * Make sure that constant pool indexes are reserved for the  

   * following items before starting to write the final class file.  

   */  

  cp.getClass(dotToSlash(className));   

  cp.getClass(superclassName);   

  for (int i = 0; i < interfaces.length; i++) {   

      cp.getClass(dotToSlash(interfaces[i].getName()));   

  }   

  /*  

   * Disallow new constant pool additions beyond this point, since  

   * we are about to write the final constant pool table.  

   */  

  cp.setReadOnly();   

  ByteArrayOutputStream bout = new ByteArrayOutputStream();   

  DataOutputStream dout = new DataOutputStream(bout);   

  try {   

      /*  

       * Write all the items of the "ClassFile" structure.  

       * See JVMS section 4.1.  

       */  

          // u4 magic;   

      dout.writeInt(0xCAFEBABE);   

          // u2 minor_version;   

      dout.writeShort(CLASSFILE_MINOR_VERSION);   

          // u2 major_version;   

      dout.writeShort(CLASSFILE_MAJOR_VERSION);   

      cp.write(dout);   // (write constant pool)   

          // u2 access_flags;   

      dout.writeShort(ACC_PUBLIC | ACC_FINAL | ACC_SUPER);   

          // u2 this_class;   

      dout.writeShort(cp.getClass(dotToSlash(className)));   

          // u2 super_class;   

      dout.writeShort(cp.getClass(superclassName));   

          // u2 interfaces_count;   

      dout.writeShort(interfaces.length);   

          // u2 interfaces[interfaces_count];   

      for (int i = 0; i < interfaces.length; i++) {   

    dout.writeShort(cp.getClass(   

        dotToSlash(interfaces[i].getName())));   

      }   

          // u2 fields_count;   

      dout.writeShort(fields.size());   

          // field_info fields[fields_count];   

      for (FieldInfo f : fields) {   

    f.write(dout);   

      }   

          // u2 methods_count;   

      dout.writeShort(methods.size());   

          // method_info methods[methods_count];   

      for (MethodInfo m : methods) {   

    m.write(dout);   

      }   

             // u2 attributes_count;   

      dout.writeShort(0); // (no ClassFile attributes for proxy classes)   

  } catch (IOException e) {   

      throw new InternalError("unexpected I/O Exception");   

  }   

  return bout.toByteArray(); 

总结

一个典型的动态代理创建对象过程可分为以下四个步骤:
1、通过实现InvocationHandler接口创建自己的调用处理器 IvocationHandler handler = new InvocationHandlerImpl(...);
2、通过为Proxy类指定ClassLoader对象和一组interface创建动态代理类
Class clazz = Proxy.getProxyClass(classLoader,new Class[]{...});
3、通过反射机制获取动态代理类的构造函数,其参数类型是调用处理器接口类型
Constructor constructor = clazz.getConstructor(new Class[]{InvocationHandler.class});
4、通过构造函数创建代理类实例,此时需将调用处理器对象作为参数被传入
Interface Proxy = (Interface)constructor.newInstance(new Object[] (handler));
为了简化对象创建过程,Proxy类中的newInstance方法封装了2~4,只需两步即可完成代理对象的创建。
生成的ProxySubject继承Proxy类实现Subject接口,实现的Subject的方法实际调用处理器的invoke方法,而invoke方法利用反射调用的是被代理对象的的方法(Object result=method.invoke(proxied,args))

美中不足

诚然,Proxy已经设计得非常优美,但是还是有一点点小小的遗憾之处,那就是它始终无法摆脱仅支持interface代理的桎梏,因为它的设计注定了这个遗憾。回想一下那些动态生成的代理类的继承关系图,它们已经注定有一个共同的父类叫Proxy。Java的继承机制注定了这些动态代理类们无法实现对class的动态代理,原因是多继承在Java中本质上就行不通。有很多条理由,人们可以否定对 class代理的必要性,但是同样有一些理由,相信支持class动态代理会更美好。接口和类的划分,本就不是很明显,只是到了Java中才变得如此的细化。如果只从方法的声明及是否被定义来考量,有一种两者的混合体,它的名字叫抽象类。实现对抽象类的动态代理,相信也有其内在的价值。此外,还有一些历史遗留的类,它们将因为没有实现任何接口而从此与动态代理永世无缘。如此种种,不得不说是一个小小的遗憾。但是,不完美并不等于不伟大,伟大是一种本质,Java动态代理就是佐例。

参考资料

1、JDK动态代理实现原理

2、Java动态代理机制分析及扩展

你可能感兴趣的:(java动态代理)